全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Clinical Trials and Treatment of ATL

DOI: 10.1155/2012/101754

Full-Text   Cite this paper   Add to My Lib

Abstract:

ATL is a distinct peripheral T-lymphocytic malignancy associated with human T-cell lymphotropic virus type I (HTLV-1). The diversity in clinical features and prognosis of patients with this disease has led to its subtype-classification into four categories, acute, lymphoma, chronic, and smoldering types, defined by organ involvement, and LDH and calcium values. In case of acute, lymphoma, or unfavorable chronic subtypes (aggressive ATL), intensive chemotherapy like the LSG15 regimen (VCAP-AMP-VECP) is usually recommended if outside of clinical trials, based on the results of a phase 3 trial. In case of favorable chronic or smoldering ATL (indolent ATL), watchful waiting until disease progression has been recommended, although the long-term prognosis was inferior to those of, for instance, chronic lymphoid leukemia. Retrospective analysis suggested that the combination of interferon alpha and zidovudine was apparently promising for the treatment of ATL, especially for types with leukemic manifestation. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is also promising for the treatment of aggressive ATL possibly reflecting graft versus ATL effect. Several new agent trials for ATL are ongoing and in preparation, including a defucosylated humanized anti-CC chemokine receptor 4 monoclonal antibody, IL2-fused with diphtheria toxin, histone deacetylase inhibitors, a purine nucleoside phosphorylase inhibitor, a proteasome inhibitor, and lenalidomide. 1. Introduction Adult T-cell leukemia-lymphoma (ATL) was first described in 1977 by Uchiyama et al. as a distinct clinico-pathological entity with a suspected viral etiology because of the clustering of the disease in the southwest region of Japan [1]. Subsequently, a novel RNA retrovirus, human T-cell leukemia/lymphotropic virus type I (HTLV-1), was isolated from a cell line established from leukemic cells of an ATL patient, and the finding of a clear association with ATL led to its inclusion among human carcinogenic pathogens [2–5]. In the mid-1980s and 1990s, several inflammatory diseases were reported to be associated with HTLV-1 [6–10]. At the same time, endemic areas for the virus and diseases have been found (reviewed in [11–13]). Diversity in ATL has been recognized and a classification of clinical subtypes of the disease was proposed [14]. This chapter will review the current recognition of ATL focusing on treatment of the disease. 2. Clinical Features and Laboratory Findings of ATL ATL patients show a variety of clinical manifestations because of various complications of organ involvement

References

[1]  T. Uchiyama, J. Yodoi, and K. Sagawa, “Adult T-cell leukemia: clinical and hematologic features of 16 cases,” Blood, vol. 50, no. 3, pp. 481–492, 1977.
[2]  B. J. Poiesz, F. W. Ruscetti, and A. F. Gazdar, “Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 12, pp. 7415–7419, 1980.
[3]  Y. Hinuma, K. Nagata, and M. Hanaoka, “Adult T-cell leukemia: antigen in an ATL cell line and detection of antibodies to the antigen in human sera,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 10 I, pp. 6476–6480, 1981.
[4]  I. Miyoshi, I. Kubonishi, and S. Yoshimoto, “Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells,” Nature, vol. 294, no. 5843, pp. 770–771, 1981.
[5]  M. Yoshida, I. Miyoshi, and Y. Hinuma, “Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 6 I, pp. 2031–2035, 1982.
[6]  A. Gessain, F. Barin, and J. C. Vernant, “Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis,” The Lancet, vol. 2, no. 8452, pp. 407–410, 1985.
[7]  M. Osame, K. Usuku, and S. Izumo, “HTLV-I associated myelopathy, a new clinical entity,” The Lancet, vol. 1, no. 8488, pp. 1031–1032, 1986.
[8]  L. LaGrenade, B. Hanchard, V. Fletcher, B. Cranston, and W. Blattner, “Infective dermatitis of Jamaican children: a marker for HTLV-I infection,” The Lancet, vol. 336, no. 8727, pp. 1345–1347, 1990.
[9]  M. Mochizuki, T. Watanabe, K. Yamaguchi et al., “HTLV-I uveitis: a distinct clinical entity caused by HTLV-I,” Japanese Journal of Cancer Research, vol. 83, no. 3, pp. 236–239, 1992.
[10]  K. Terada, S. Katamine, K. Eguchi et al., “Prevalence of serum and salivary antibodies to HTLV-1 in Sjogren's syndrome,” The Lancet, vol. 344, no. 8930, pp. 1116–1119, 1994.
[11]  K. Takatsuki, Adult T-cell Leukemia, Oxford University Press, New York, NY, USA, 1994.
[12]  “IARC Working Group on the Evaluation of Carcinogenic Risks to Humans: human immunodeficiency viruses and human T-cell lymphotropic viruses,” in IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, IARC Press, Geneva, Switzerland, 1996.
[13]  K. Ohshima, E. S. Jaffe, and M. Kikuchi, “Adult T-cell leukemia/lymphoma,” in WHO Classification of Tumour of Haemaopoietic and Lymphoid Tissues, S. H. Swerdlow, E. Campo, N. L. Harris, et al., Eds., pp. 281–284, IARC Press, Lyon, France, 4th edition, 2008.
[14]  M. Shimoyama, “Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the lymphoma study group (1984-87),” British Journal of Haematology, vol. 79, no. 3, pp. 428–437, 1991.
[15]  A. L. Bittencourt, M. D. G. Vieira, C. R. Brites, L. Farre, and H. S. Barbosa, “Adult T-cell leukemia/lymphoma in Bahia, Brazil: analysis of prognostic factors in a group of 70 patients,” American Journal of Clinical Pathology, vol. 128, no. 5, pp. 875–882, 2007.
[16]  M. Amano, M. Kurokawa, K. Ogata, H. Itoh, H. Kataoka, and M. Setoyama, “New entity, definition and diagnostic criteria of cutaneous adult T-cell leukemia/lymphoma: human T-lymphotropic virus type 1 proviral DNA load can distinguish between cutaneous and smoldering types,” Journal of Dermatology, vol. 35, no. 5, pp. 270–275, 2008.
[17]  Y. Sawada, R. Hino, K. Hama et al., “Type of skin eruption is an independent prognostic indicator for adult T-cell leukemia/lymphoma,” Blood, vol. 117, no. 15, pp. 3961–3967, 2011.
[18]  J. M. Bennett, D. Catovsky, M. T. Daniel et al., “Proposals for the classification of chronic (mature) B and T lymphoid leukaemias,” Journal of Clinical Pathology, vol. 42, no. 6, pp. 567–584, 1989.
[19]  K. Lennert, M. Kikuchi, and E. Sato, “HTLV-positive and -negative T-cell lymphomas. Morphological and immunohistochemical differences between European and HTLV-positive Japanese T-cell lymphomas,” International Journal of Cancer, vol. 35, no. 1, pp. 65–72, 1985.
[20]  T. Watanabe, K. Yamaguchi, K. Takatsuki, M. Osame, and M. Yoshida, “Constitutive expression of parathyroid hormone-related protein gene in human T cell leukemia virus type 1 (HTLV-1) carriers and adult T cell leukemia patients that can be trans-activated by HTLV-1 tax gene,” Journal of Experimental Medicine, vol. 172, no. 3, pp. 759–765, 1990.
[21]  K. Nosaka, T. Miyamoto, T. Sakai, H. Mitsuya, T. Suda, and M. Matsuoka, “Mechanism of hypercalcemia in adult T-cell leukemia: overexpression of receptor activator of nuclear factor κb ligand on adult T-cell leukemia cells,” Blood, vol. 99, no. 2, pp. 634–640, 2002.
[22]  H. Tsuda, T. Sawada, K. M. Sakata, and K. Takatsuki, “Possible mechanisms for the elevation of serum β2-microglobulin levels in adult T-cell leukemia,” International Journal of Hematology, vol. 55, no. 2, pp. 179–187, 1992.
[23]  N. Sadamori, S. Ikeda, K. Yamaguchi et al., “Serum deoxythymidine kinase in adult T-cell leukemia-lymphoma and its related disorders,” Leukemia Research, vol. 15, no. 2-3, pp. 99–103, 1991.
[24]  S. Kamihira, S. Atogami, H. Sohda, S. Momita, Y. Yamada, and M. Tomonaga, “Significance of soluble interleukin-2 receptor levels for evaluation of the progression of adult T-cell leukemia,” Cancer, vol. 73, no. 11, pp. 2753–2758, 1994.
[25]  S. Kamihira, H. Sohda, T. S. Atogami et al., “Phenotypic diversity and prognosis of adult T-cell leukemia,” Leukemia Research, vol. 16, no. 5, pp. 435–441, 1992.
[26]  A. Inagaki, T. Ishida, T. Ishii et al., “Clinical significance of serum Th1-, Th2- and regulatory T cells-associated cytokines in adult T-cell leukemia/lymphoma: high Interleukin-5 and -10 levels are significant unfavorable prognostic factors,” International Journal of Cancer, vol. 118, no. 12, pp. 3054–3061, 2006.
[27]  T. Ishida, A. Utsunomiya, S. Iida et al., “Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma: its close association with skin involvement and unfavorable outcome,” Clinical Cancer Research, vol. 9, no. 10 I, pp. 3625–3634, 2003.
[28]  T. Kohno, Y. Yamada, N. Akamatsu et al., “Possible origin of adult T-cell leukemia/lymphoma cells from human T lymphotropic virus type-1-infected regulatory T cells,” Cancer Science, vol. 96, no. 8, pp. 527–533, 2005.
[29]  Y. Furukawa, J. Fujisawa, M. Osame et al., “Frequent clonal proliferation of human T-cell leukemia virus type 1 (HTLV- 1)-infected T cells in HTLV-1-associated myelopathy (HAM-TSP),” Blood, vol. 80, no. 4, pp. 1012–1016, 1992.
[30]  S. Ikeda, S. Momita, K. I. Kinoshita et al., “Clinical course of human T-lymphotropic virus type I carriers with molecularly detectable monoclonal proliferation of T lymphocytes: defining a low- and high-risk population,” Blood, vol. 82, no. 7, pp. 2017–2024, 1993.
[31]  K. Tsukasaki, O. Hermine, A. Bazarbachi et al., “Definition, prognostic factors, treatment, and response criteria of adult T-cell leukemia-lymphoma: a proposal from an international consensus meeting,” Journal of Clinical Oncology, vol. 27, no. 3, pp. 453–459, 2009.
[32]  M. Shimoyama, “Major prognostic factors of patients with adult T-cell leukemia-lymphoma: a cooperative study,” Leukemia Research, vol. 15, no. 2-3, pp. 81–90, 1991.
[33]  Y. Yamada, Y. Hatta, K. Murata et al., “Deletions of p15 and/or p16 genes as a poor-prognosis factor in adult T- cell leukemia,” Journal of Clinical Oncology, vol. 15, no. 5, pp. 1778–1785, 1997.
[34]  A. Utsunomiya, T. Ishida, A. Inagaki et al., “Clinical significance of a blood eosinophilia in adult T-cell leukemia/lymphoma: a blood eosinophilia is a significant unfavorable prognostic factor,” Leukemia Research, vol. 31, no. 7, pp. 915–920, 2007.
[35]  Y. Takasaki, M. Iwanaga, K. Tsukasaki et al., “Impact of visceral involvements and blood cell count abnormalities on survival in adult T-cell leukemia/lymphoma (ATLL),” Leukemia Research, vol. 31, no. 6, pp. 751–757, 2007.
[36]  N. Ohno, A. Tani, K. Uozumi et al., “Expression of functional lung resistance-related protein predicts poor outcome in adult T-cell leukemia,” Blood, vol. 98, no. 4, pp. 1160–1165, 2001.
[37]  M. Tawara, S. J. Hogerzeil, Y. Yamada et al., “Impact of p53 aberration on the progression of Adult T-cell Leukemia/Lymphoma,” Cancer Letters, vol. 234, no. 2, pp. 249–255, 2006.
[38]  Y. Takasaki, M. Iwanaga, Y. Imaizumi et al., “Long-term study of indolent adult T-cell leukemia-lymphoma,” Blood, vol. 115, no. 22, pp. 4337–4343, 2010.
[39]  A. Bazarbachi, Y. Plumelle, J. Carlos Ramos et al., “Meta-analysis on the use of zidovudine and interferon-alfa in adult T-cell leukemia/lymphoma showing improved survival in the leukemic subtypes,” Journal of Clinical Oncology, vol. 28, no. 27, pp. 4177–4183, 2010.
[40]  M. Shimoyama, K. Ota, M. Kikuchi et al., “Chemotherapeutic results and prognostic factors of patients with advanced non-Hodgkin's lymphoma treated with VEPA or VEPA-M,” Journal of Clinical Oncology, vol. 6, no. 1, pp. 128–141, 1988.
[41]  M. Shimoyama, K. Ota, M. Kikuchi et al., “Major prognostic factors of adult patients with advanced T-cell lymphoma/leukemia,” Journal of Clinical Oncology, vol. 6, no. 7, pp. 1088–1097, 1988.
[42]  K. Tobinai, M. Shimoyama, K. Minato, et al., “Japan Clinical Oncology Group phase II trial of second-generation LSG4 protocol in aggressive T- and B-lymphoma: a new predictive model for T- and B-lymphoma,” Proceedings of American Society of Clinical Oncology, vol. 13, p. 378, 1994.
[43]  K. Tobinai, M. Shimoyama, S. Inoue et al., “Phase I study of YK-176 (2'-deoxycoformycin) in patients with adult T-cell leukemia-lymphoma. The DCF Study Group,” Japanese Journal of Clinical Oncology, vol. 22, no. 3, pp. 164–171, 1992.
[44]  K. Tsukasaki, K. Tobinai, M. Shimoyama et al., “Deoxycoformycin-containing combination chemotherapy for adult T-cell leukemia-lymphoma: Japan Clinical Oncology Group Study (JCOG9109),” International Journal of Hematology, vol. 77, no. 2, pp. 164–170, 2003.
[45]  Y. Yamada, M. Tomonaga, H. Fukuda et al., “A new G-CSF-supported combination chemotherapy, LSG15, for adult T-cell leukaemia-lymphoma: Japan Clinical Oncology Group Study 9303,” British Journal of Haematology, vol. 113, no. 2, pp. 375–382, 2001.
[46]  K. Tsukasaki, A. Utsunomiya, H. Fukuda et al., “VCAP-AMP-VECP compared with biweekly CHOP for adult T-cell leukemia-lymphoma: Japan Clinical Oncology Group study JCOG9801,” Journal of Clinical Oncology, vol. 25, no. 34, pp. 5458–5464, 2007.
[47]  K. Itoh, T. Ohtsu, H. Fukuda et al., “Randomized phase II study of biweekly CHOP and dose-escalated CHOP with prophylactic use of lenograstim (glycosylated G-CSF) in aggressive non-Hodgkin's lymphoma: Japan clinical oncology group study 9505,” Annals of Oncology, vol. 13, no. 9, pp. 1347–1355, 2002.
[48]  K. Yasuo, H. Shuichi, F. Tatsuhiko et al., “Expression of P-glycoprotein in adult T-cell leukemia cells,” Blood, vol. 76, no. 10, pp. 2065–2071, 1990.
[49]  K. Tsukasaki, S. Ikeda, K. Murata et al., “Characteristics of chemotherapy-induced clinical remission in long survivors with aggressive adult T-cell leukemia/lymphoma,” Leukemia Research, vol. 17, no. 2, pp. 157–166, 1993.
[50]  M. Ichimaru, S. Kamihira, Y. Moriuchi et al., “Clinical study on the effect of natural α-interferon (HLBI) in the treatment of adult T-cell leukemia,” Gan to Kagaku Ryoho, vol. 15, no. 10, pp. 2975–2981, 1988 (Japanese).
[51]  P. S. Gill, W. Harrington, M. H. Kaplan et al., “Treatment of adult T-cell leukemia-lymphoma with a combination of interferon alfa and zidovudine,” The New England Journal of Medicine, vol. 332, no. 26, pp. 1744–1748, 1995.
[52]  O. Hermine, D. Bouscary, A. Gessain et al., “Brief report: treatment of adult T-cell leukemia-lymphoma with zidovudine and interferon alfa,” The New England Journal of Medicine, vol. 332, no. 26, pp. 1749–1751, 1995.
[53]  K. Tobinai, Y. Kobayashi, M. Shimoyama et al., “Interferon alfa and zidovudine in adult T-cell leukemia-lymphoma,” The New England Journal of Medicine, vol. 333, no. 19, pp. 1285–1286, 1995.
[54]  J. D. White, G. Wharfe, D. M. Stewart et al., “The combination of zidovudine and interferon alpha-2B in the treatment of adult T-cell leukemia/lymphoma,” Leukemia and Lymphoma, vol. 40, no. 3-4, pp. 287–294, 2001.
[55]  E. Matutes, G. P. Taylor, J. Cavenagh et al., “Interferon α and zidovudine therapy in adult T-cell leukaemia lymphoma: response and outcome in 15 patients,” British Journal of Haematology, vol. 113, no. 3, pp. 779–784, 2001.
[56]  O. Hermine, I. Allard, V. Lévy, B. Arnulf, A. Gessain, and A. Bazarbachi, “A prospective phase II clinical trial with the use of zidovudine and interferon-alpha in the acute and lymphoma forms of adult T-cell leukemia/lymphoma,” Hematology Journal, vol. 3, no. 6, pp. 276–282, 2002.
[57]  A. Bazarbachi, R. Nasr, M. E. El-Sabban et al., “Evidence against a direct cytotoxic effect of alpha interferon and zidovudine in HTLV-I associated adult T cell leukemia/lymphoma,” Leukemia, vol. 14, no. 4, pp. 716–721, 2000.
[58]  A. Datta, M. Bellon, U. Sinha-Datta et al., “Persistent inhibition of telomerase reprograms adult T-cell leukemia to p53-dependent senescence,” Blood, vol. 108, no. 3, pp. 1021–1029, 2006.
[59]  T. Fukushima, Y. Miyazaki, S. Honda et al., “Allogeneic hematopoietic stem cell transplantation provides sustained long-term survival for patients with adult T-cell leukemia/lymphoma,” Leukemia, vol. 19, no. 5, pp. 829–834, 2005.
[60]  M. Hishizawa, J. Kanda, A. Utsunomiya et al., “Transplantation of allogeneic hematopoietic stem cells for adult T-cell leukemia: a nationwide retrospective study,” Blood, vol. 116, no. 8, pp. 1369–1376, 2010.
[61]  J. Okamura, A. Utsunomiya, R. Tanosaki et al., “Allogeneic stem-cell transplantation with reduced conditioning intensity as a novel immunotherapy and antiviral therapy for adult T-cell leukemia/lymphoma,” Blood, vol. 105, no. 10, pp. 4143–4145, 2005.
[62]  R. Tanosaki, N. Uike, A. Utsunomiya et al., “Allogeneic hematopoietic stem cell transplantation using reduced-intensity conditioning for adult T cell leukemia/lymphoma: impact of antithymocyte globulin on clinical outcome,” Biology of Blood and Marrow Transplantation, vol. 14, no. 6, pp. 702–708, 2008.
[63]  H. Tamaki and M. Matsuoka, “Donor-derived T-cell leukemia after bone marrow transplantation,” The New England Journal of Medicine, vol. 354, no. 16, pp. 1758–1759, 2006.
[64]  B. D. Cheson, S. J. Horning, B. Coiffier et al., “Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas,” Journal of Clinical Oncology, vol. 17, no. 4, pp. 1244–1253, 1999.
[65]  B. D. Cheson, J. M. Bennett, M. Grever et al., “National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment,” Blood, vol. 87, no. 12, pp. 4990–4997, 1996.
[66]  B. D. Cheson, B. Pfistner, M. E. Juweid et al., “Revised response criteria for malignant lymphoma,” Journal of Clinical Oncology, vol. 25, no. 5, pp. 579–586, 2007.
[67]  N. Arima, H. Mizoguchi, S. Shirakawa, M. Tomonaga, K. Takatsuki, and R. Ohno, “Phase I clinical study of SH L573 (fludarabine phosphate) in patients with chronic lymphocytic leukemia and adult T-cell leukemia/lymphoma,” Gan to Kagaku Ryoho, vol. 26, no. 5, pp. 619–629, 1999 (Japanese).
[68]  K. Tobinai, N. Uike, Y. Saburi et al., “Phase II study of cladribine (2-chlorodeoxyadenosine) in relapsed or refractory adult T-cell leukemia-lymphoma,” International Journal of Hematology, vol. 77, no. 5, pp. 512–517, 2003.
[69]  M. Duvic, A. Forero-Torres, F. Foss, et al., “Long-term treatment of CTCL with the oral PNP inhibitor, forodesine,” in Proceedings of the ASCO Annual Meeting, 2009, abstract no. 8552.
[70]  O. A. O'Connor, M. L. Heaney, L. Schwartz et al., “Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies,” Journal of Clinical Oncology, vol. 24, no. 1, pp. 166–173, 2006.
[71]  H. Hasegawa, Y. Yamada, K. Tsukasaki et al., “LBH589, a deacetylase inhibitor, induces apoptosis in adult T-cell leukemia/lymphoma cells via activation of a novel RAIDD-caspase-2 pathway,” Leukemia, vol. 25, no. 4, pp. 575–578, 2011.
[72]  T. A. Waldmann, “Multichain interleukin-2 receptor: a target for immunotherapy in lymphoma,” Journal of the National Cancer Institute, vol. 81, no. 12, pp. 914–923, 1989.
[73]  T. A. Waldmann, J. D. White, J. A. Carrasquillo et al., “Radioimmunotherapy of interleukin-2Rα-expressing adult T-cell leukemia with Yttrium-90-labeled anti-Tac,” Blood, vol. 86, no. 11, pp. 4063–4075, 1995.
[74]  J. L. Berkowitz, J. E. Janik, D. M. Stewart, et al., “Phase II trial of daclizumab in human T-cell lymphotropic virus type-1 (HTLV-1)-associated adult T-cell leukemia/lymphoma (ATL),” Journal of Clinical Oncology, vol. 28, supplement, abstract 8043, p. 7s, 2010.
[75]  N. H. Dang, B. Pro, F. B. Hagemeister et al., “Phase II trial of denileukin diftitox for relapsed/refractory T-cell non-Hodgkin lymphoma,” British Journal of Haematology, vol. 136, no. 3, pp. 439–447, 2007.
[76]  F. M. Foss, N. N. Sjak-Shie, A. Goy, et al., “Phase II study of denileukin diftitox with CHOP chemotherapy in newly-diagnosed PTCL: CONCEPT trial,” Journal of Clinical Oncology, vol. 28, supplement, abstract 8045, p. 15s, 2010.
[77]  G. DiVenuti, R. Nawgiri, and F. Foss, “Denileukin diftitox and hyper-CVAD in the treatment of human T-cell lymphotropic virus 1-associated adult T-cell leukemia/lymphoma,” Clinical Lymphoma, vol. 4, no. 3, pp. 176–178, 2003.
[78]  S. J. Rodig, J. S. Abramson, G. S. Pinkus et al., “Heterogeneous CD52 expression among hematologic neoplasms: implications for the use of alemtuzumab (CAMPATH-1H),” Clinical Cancer Research, vol. 12, no. 23, pp. 7174–7179, 2006.
[79]  L. Jiang, C. M. Yuan, J. Hubacheck et al., “Variable CD52 expression in mature T cell and NK cell malignancies: implications for alemtuzumab therapy,” British Journal of Haematology, vol. 145, no. 2, pp. 173–179, 2009.
[80]  A. Gallamini, F. Zaja, C. Patti et al., “Alemtuzumab (Campath-1H) and CHOP chemotherapy as first-line treatment of peripheral T-cell lymphoma: results of a GITIL (Gruppo Italiano Terapie Innovative nei Linfomi) prospective multicenter trial,” Blood, vol. 110, no. 7, pp. 2316–2323, 2007.
[81]  Z. Zhang, M. Zhang, C. K. Goldman, J. V. Ravetch, and T. A. Waldmann, “Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD52 monoclonal antibody, Campath-1H,” Cancer Research, vol. 63, no. 19, pp. 6453–6457, 2003.
[82]  A. Mone, S. Puhalla, S. Whitman et al., “Durable hematologic complete response and suppression of HTLV-1 viral load following alemtuzumab in zidovudine/IFN-α-refractory adult T-cell leukemia,” Blood, vol. 106, no. 10, pp. 3380–3382, 2005.
[83]  F. Ravandi and S. Faderl, “Complete response in a patient with adult T-cell leukemia (ATL) treated with combination of alemtuzumab and pentostatin,” Leukemia Research, vol. 30, no. 1, pp. 103–105, 2006.
[84]  D. O'Mahony, J. C. Morris, M. Stetler-Stevenson et al., “EBV-related lymphoproliferative disease complicating therapy with the anti-CD2 monoclonal antibody, siplizumab, in patients with t-cell malignancies,” Clinical Cancer Research, vol. 15, no. 7, pp. 2514–2522, 2009.
[85]  R. Niwa, E. Shoji-Hosaka, M. Sakurada et al., “Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma,” Cancer Research, vol. 64, no. 6, pp. 2127–2133, 2004.
[86]  K. Yamamoto, A. Utsunomiya, K. Tobinai et al., “Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma,” Journal of Clinical Oncology, vol. 28, no. 9, pp. 1591–1598, 2010.
[87]  T. Ishida, T. Joh, N. Uike, et al., “Multicenter phase II study of KW-0761, a defucosylated anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma (ATL),” Blood, vol. 116, abstract 285, p. 128, 2010.
[88]  J. Lee, C. Suh, H. J. Kang et al., “Phase I study of proteasome inhibitor bortezomib plus CHOP in patients with advanced, aggressive T-cell or NK/T-cell lymphoma,” Annals of Oncology, vol. 19, no. 12, pp. 2079–2083, 2008.
[89]  Y. Satou, K. Nosaka, Y. Koya, J. I. Yasunaga, S. Toyokuni, and M. Matsuoka, “Proteasome inhibitor, bortezomib, potently inhibits the growth of adult T-cell leukemia cells both in vivo and in vitro,” Leukemia, vol. 18, no. 8, pp. 1357–1363, 2004.
[90]  G. S. Dueck, N. Chua, A. Prasad, et al., “Activity of lenalidomide in a phase II trial for T-cell lymphoma:Report on the first 24 cases,” Journal of Clinical Oncology, vol. 27, supplement, abstract 8524, p. 15s, 2009.
[91]  O. A. O'Connor, S. Horwitz, P. Hamlin et al., “Phase II-I-II study of two different doses and schedules of pralatrexate, a high-affinity substrate for the reduced folate carrier, in patients with relapsed or refractory lymphoma reveals marked activity in T-cell malignancies,” Journal of Clinical Oncology, vol. 27, no. 26, pp. 4357–4364, 2009.
[92]  O. A. O’Connor, B. Pro, L. Pinter-Brown, et al., “PROPEL: a multi-center phase 2 open-label study of pralatrexate (PDX) with vitamin B12 and folic acid supplementation in patients with replapsed or refractory peripheral T-cell lymphoma,” Blood, vol. 112, p. 261, 2008.
[93]  A. G. Marneros, M. E. Grossman, D. N. Silvers et al., “Pralatrexate-induced tumor cell apoptosis in the epidermis of a patient with HTLV-1 adult T-cell lymphoma/leukemia causing skin erosions,” Blood, vol. 113, no. 25, pp. 6338–6341, 2009.
[94]  M. Iwanaga, S. Chiyoda, E. Kusaba, and S. Kamihira, “Trends in the seroprevalence of HTLV-1 in Japanese blood donors in Nagasaki Prefecture, 2000-2006,” International Journal of Hematology, vol. 90, no. 2, pp. 186–190, 2009.
[95]  M. Iwanaga, T. Watanabe, A. Utsunomiya et al., “Human T-cell leukemia virus type I (HTLV-1) proviral load and disease progression in asymptomatic HTLV-1 carriers: a nationwide prospective study in Japan,” Blood, vol. 116, no. 8, pp. 1211–1219, 2010.
[96]  J. M. Vose, M. Neumann, and M. E. Harris, “International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes international T-cell lymphoma project,” Journal of Clinical Oncology, vol. 26, no. 25, pp. 4124–4130, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413