全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sex-Specific Brain Deficits in Auditory Processing in an Animal Model of Cocaine-Related Schizophrenic Disorders

DOI: 10.3390/brainsci3020504

Keywords: cocaine, schizophrenia, addiction, sexual dimorphism, mesocorticolimbic, nigrostriatal, neuronal circuits, pons, sensory-motor gating, psychostimulants, dorsocochlear nucleus, inferior, superior colliculi, acoustic nerve

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cocaine is a psychostimulant in the pharmacological class of drugs called Local Anesthetics. Interestingly, cocaine is the only drug in this class that has a chemical formula comprised of a tropane ring and is, moreover, addictive. The correlation between tropane and addiction is well-studied. Another well-studied correlation is that between psychosis induced by cocaine and that psychosis endogenously present in the schizophrenic patient. Indeed, both of these psychoses exhibit much the same behavioral as well as neurochemical properties across species. Therefore, in order to study the link between schizophrenia and cocaine addiction, we used a behavioral paradigm called Acoustic Startle. We used this acoustic startle paradigm in female versus male Sprague-Dawley animals to discriminate possible sex differences in responses to startle. The startle method operates through auditory pathways in brain via a network of sensorimotor gating processes within auditory cortex, cochlear nuclei, inferior and superior colliculi, pontine reticular nuclei, in addition to mesocorticolimbic brain reward and nigrostriatal motor circuitries. This paper is the first to report sex differences to acoustic stimuli in Sprague-Dawley animals ( Rattus norvegicus) although such gender responses to acoustic startle have been reported in humans (Swerdlow et al. 1997 [1]). The startle method monitors pre-pulse inhibition (PPI) as a measure of the loss of sensorimotor gating in the brain's neuronal auditory network; auditory deficiencies can lead to sensory overload and subsequently cognitive dysfunction. Cocaine addicts and schizophrenic patients as well as cocaine treated animals are reported to exhibit symptoms of defective PPI (Geyer et al., 2001 [2]). Key findings are: (a) Cocaine significantly reduced PPI in both sexes. (b) Females were significantly more sensitive than males; reduced PPI was greater in females than in males. (c) Physiological saline had no effect on startle in either sex. Thus, the data elucidate gender-specificity to the startle response in animals. Finally, preliminary studies show the effect of cocaine on acoustic startle in tandem with effects on estrous cycle. The data further suggest that hormones may play a role in these sex differences to acoustic startle reported herein.

References

[1]  Swerdlow, N.R.; Hartman, P.L.; Auerbach, P.P. Changes in sensorimotor inhibition across the menstrual cycle: Implications for neuropsychiatric disorders. Biol. Psychiatry 1997, 41, 452–460, doi:10.1016/S0006-3223(96)00065-0.
[2]  Geyer, M.A.; Kerbs-Thomson, K.; Braff, D.L.; Swerdlow, N.R. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: A decade in review. Psychopharmacology 2001, 156, 117–154, doi:10.1007/s002130100811.
[3]  Atropine. Available online: http://www.newworldencyclopedia.org/entry/Atropine (accessed on 28 December 2012).
[4]  Goodman, L.S.; Gilman, A.G.; Limbird, L.E.; Milinoff, P.B.; Ruddon, R.W. Goodman and Gilman’s: The Pharmacological Basis of Therapeutics, 9th ed.; Mcgraw-Hill: New York, NY, USA, 1996.
[5]  Parnas, M.L.; Gaffaney, J.D.; Zou, M.F.; Lever, J.R.; Newman, A.H.; Vaughan, R.A. Labeling of Dopamine Transporter Transmembrane Domain 1 with the Tropane Ligan N-[4-Azido-3-[125I]iodophenyl)butyl]-2β-carbomethoxy-3β-(4-chlorophenyl)tropane Implicates Proximity of Cocaine and Substrate Active Sites. Mol. Pharmacol. 2008, 73, 1141–1150, doi:10.1124/mol.107.043679.
[6]  Kopaitic, T.A.; Liu, Y.; Surratt, C.K.; Donavan, D.M.; Newman, A.H.; Katz, J.L. Dopamine Transporter-Dependent and -Independent Striatal Binding of the Benztropine Analog JHW 007, a cocaine Antagonist with Low Abuse Liability. J. Pharmacol. Exp. Ther. 2010, 335, 703–714, doi:10.1124/jpet.110.171629.
[7]  Broderick, P.A. Cocaine: On-line analysis of an accumbens amine neural basis for psychomotor behavior. Pharmacol. Biochem. Behav. 1991, 40, 959–968, doi:10.1016/0091-3057(91)90112-F.
[8]  Broderick, P.A. In vivo voltammetric studies on release mechanisms for cocaine with γ-butyrolactone. Pharmacol. Biochem. Behav. 1991, 40, 969–975, doi:10.1016/0091-3057(91)90113-G.
[9]  Broderick, P.A. Cocaine’s colocalized effects on synaptic serotonin and dopamine in ventral tegmentum in a reinforcement paradigm. Pharmacol. Biochem. Behav. 1992, 42, 889–898, doi:10.1016/0091-3057(92)90045-H.
[10]  Broderick, P.A. Distinguishing effects of cocaine (IV) and (SC) on mesoaccumbens dopamine and serotonin release with chloral hydrate anesthesia. Pharmacol. Biochem. Behav. 1992, 43, 929–937, doi:10.1016/0091-3057(92)90427-H.
[11]  Broderick, P.A. In vivo electrochemical studies of gradient effects of (SC) cocaine on dopamine and serotonin release in dorsal striatum of conscious rats. Pharmacol. Biochem. Behav. 1993, 46, 973–984, doi:10.1016/0091-3057(93)90231-H.
[12]  Broderick, P.A.; Kornak, E.P.; Eng, F.; Wechsler, R.W. Real time detection of acute (IP) cocaine-enhanced dopamine and serotonin release in ventrolateral nucleus accumbens of the behaving Norway rat. Pharmacol. Biochem. Behav. 1993, 46, 715–722, doi:10.1016/0091-3057(93)90567-D.
[13]  Broderick, P.A.; Hope, O.; Okonji, C.; Rahni, D.N.; Zhou, Y. Clozapine and cocaine effects on dopamine and serotonin release in nucleus accumbens during psychostimulant behavior and withdrawal. Prog. Neuropsychopharmacol. Biol. Psychiatry 2004, 28, 157–171, doi:10.1016/j.pnpbp.2003.09.032.
[14]  Broderick, P.A.; Olabisi, O.A.; Rahni, D.N.; Zhou, Y. Cocaine acts on accumbens monoamines and locomotor behavior via a 5-HT2A/2C receptor mechanism as shown by ketanserin: 24 hr follow-up studies. Prog. Neuropsychopharmacol. Biol. Psychiatry 2004, 28, 547–557, doi:10.1016/j.pnpbp.2004.01.007.
[15]  Broderick, P.A.; Hope, O. Monoamines and motor responses are co-deficient in the Fawn-Hooded depressed animal model. Prog. Neuropsychopharmacol. Biol. Psychiatry 2006, 30, 887–898, doi:10.1016/j.pnpbp.2006.01.012.
[16]  Humby, T.; Wilkinson, L.S.; Robbins, T.W.; Geyer, M.A. Prepulses inhibit startle-induced reductions of extracellular dopamine in the nucleus accumbens of rat. J. Neurosci. 1996, 16, 2149–2156.
[17]  Bradberry, C.W.; Nobiletti, J.B.; Elsworth, J.D.; Murphy, B.; Jatlow, P.; Roth, R.H. Cocaine and cocaethylene: Microdialysis comparison of brain drug levels and effects on dopamine and serotonin. J. Neurochem. 1993, 60, 1429–1435, doi:10.1111/j.1471-4159.1993.tb03305.x.
[18]  Parsons, L.H.; Justice, J.B., Jr. Serotonin and dopamine sensitization in the nucleus accumbens, ventral tegmental area, and dorsal raphe nucleus following repeated cocaine administration. J. Neurochem. 1993, 61, 1611–1619, doi:10.1111/j.1471-4159.1993.tb09794.x.
[19]  Morgan, A.E.; Porter, S.P.; Clarkson, F.A.; Volkow, N.D.; Fowler, J.S.; Dewey, S.L. Direct approach for attenuating cocaine’s effects on extracellular dopamine: Targeting the dopamine transporter. Synapse 1997, 26, 423–427, doi:10.1002/(SICI)1098-2396(199708)26:4<423::AID-SYN10>3.0.CO;2-U.
[20]  Chapman, T.; Freeman, T.; McGhie, A. Clinical research in schizophrenia; the psychotherapeutic approach. Br. J. Med. Psychol. 1959, 32, 75–85, doi:10.1111/j.2044-8341.1959.tb00471.x.
[21]  Bleuler, M. The concept of schizophrenia. Am. J. Psychiatry 1954, 5, 382–383.
[22]  Freeman, T.; McGhie, A. The relevance of genetic psychology for the psychopathology of schizophrenia. Br. J. Med. Psychol. 1957, 30, 176–187, doi:10.1111/j.2044-8341.1957.tb01195.x.
[23]  McGhie, A.; Chapman, J.; Lawson, J.S. Disturbances in Selective Attention in Schizophrenia. Proc. R. Soc. Med. 1964, 57, 419–422.
[24]  McGhie, A.; Chapman, J. Disorders of attention and perception in early schizophrenia. Br. J. Med. Psychol. 1961, 34, 103–116, doi:10.1111/j.2044-8341.1961.tb00936.x.
[25]  Hetrick, W.P.; Smith, D.A.; Spuriell, E.; Sandman, C.A.; Bunney, W.E. The putative phenomenological correlates of sensory gating: Factor analyses and a self-report rating scale. Schizophr. Res. 1997, 24, 17.
[26]  Brady, K.T.; Lydiard, R.B.; Malcolm, R.; Ballenger, J.C. Cocaine-induced psychosis. J. Clin. Psychiatry 1991, 52, 509–512.
[27]  Harris, D.; Batki, S.L. Stimulant psychosis: Symptom profile and acute clinical course. Am. J. Addict. 2000, 9, 28–37, doi:10.1080/10550490050172209.
[28]  Lysaker, P.; Bell, M.; Beam-Goulet, J.; Milstein, R. Relationship of positive and negative symptoms to cocaine abuse in schizophrenia. J. Nerv. Ment. Dis. 1994, 182, 109–112, doi:10.1097/00005053-199402000-00008.
[29]  Mendoza, R.; Miller, B.L.; Mena, I. Emergency room evaluation of cocaine-associated neuropsychiatric disorders. Recent Dev. Alcohol. 1992, 10, 73–87.
[30]  Miller, B.L.; Mena, I.; Giombetti, R.; Villanueve-Meyer, J.; Djenderdjian, A.H. Neuropsychiatric effects of cocaine: SPECT Measurements. J. Addict. Dis. 1992, 11, 47–58.
[31]  Mitchell, J.; Vierkant, A.D. Delusions and hallucinations of cocaine abusers and paranoid schizophrenics: A comparative study. J. Psychol. 1991, 125, 301–310, doi:10.1080/00223980.1991.10543294.
[32]  Nambudin, D.E.; Young, R.C. A case of late-onset crack dependence and subsequent psychosis in the elderly. J. Subst. Abuse Treat. 1991, 8, 253–255, doi:10.1016/0740-5472(91)90047-E.
[33]  Rosenthal, R.N.; Miner, C.R. Differential diagnosis of substance-induced psychosis and schizophrenia in patients with substance use disorders. Schizophr. Bull. 1997, 23, 187–193, doi:10.1093/schbul/23.2.187.
[34]  Rosse, R.B.; Collins, J.P., Jr.; Fay-McCarthy, M.; Alim, T.M.; Wyatt, R.J.; Deutsch, S.I. Phenomenologic comparison of the idiopathic psychosis of schizophrenia and drug-induced cocaine and phencyclidine psychoses: A retrospective study. Clin. Neuropharmacol. 1994, 17, 359–369, doi:10.1097/00002826-199408000-00008.
[35]  Satel, S.L.; Edell, W.S. Cocaine-induced paranoia and psychosis proneness. Am. J. Psychiatry 1991, 148, 1708–1711.
[36]  Serper, M.R.; Chou, J.C.; Allen, M.H.; Czobor, P.; Cancro, R. Symptomatic overlap of cocaine intoxication and acute schizophrenia at emergency presentation. Schizophr. Bull. 1999, 25, 387–394, doi:10.1093/oxfordjournals.schbul.a033386.
[37]  Sherer, M.A.; Kumor, K.M.; Cone, E.J.; Jaffe, J.H. Suspiciousness induced by four-hour intravenous infusions of cocaine. Preliminary findings. Arch. Gen. Psychiatry 1998, 45, 673–677.
[38]  Taylor, W.A.; Staby, A.E. Acute treatment of alcohol and cocaine emergencies. Recent Dev. Alcohol. 1992, 10, 179–191.
[39]  Tueth, M.J. High incidence of psychosis in cocaine intoxication and preventing violence. Am. J. Emerg. Med. 1993, 11, 676, doi:10.1016/0735-6757(93)90035-A.
[40]  Cocaine and related disorders. Available online: http://www.minddisorders.com/Br-Del/Cocaine-and-related-disorders.html (accessed on 28 December 2012).
[41]  Nunes, J.V.; Broderick, P.A. Novel research translates to clinical cases of schizophrenic and cocaine psychosis. Neuropsychiatr. Dis. Treat. 2007, 3, 475–485.
[42]  Waters, F. Auditory Hallucinations in Psychiatric Illness. Psychiatr. Times 2010, 27, 3.
[43]  Satel, S.L.; Seibyl, J.P.; Charney, D.S. Prolonged cocaine psychosis implies underlying major psychopathology. J. Clin. Psychiatry 1991, 52, 349–350.
[44]  Lieberman, J.A.; Kinon, B.I.; Loebel, A.D. Dopaminergic mechanisms in idiopathic and drug-induced psychoses. Schizophr. Bull. 1990, 16, 97–110, doi:10.1093/schbul/16.1.97.
[45]  Buckley, P.F. Substance abuse in schizophrenia: A review. J. Clin. Psychiatry 1998, 59, S26–S30.
[46]  Muesser, K.T.; Nishith, P.; Tracy, H.; de Girolamo, J.; Molinaro, M. Expectations and motives for substance use in schizophrenia. Schizophr. Bull. 1995, 21, 367–378, doi:10.1093/schbul/21.3.367.
[47]  Caton, C.L.; Samet, S.; Hasin, D.S. When acute-stage psychosis and substance use co-occur: Differentiating substance-induced and primary psychotic disorders. J. Psychiatr. Pract. 2000, 6, 256–266, doi:10.1097/00131746-200009000-00003.
[48]  Batki, S.L.; Harris, D.S. Quantitative drug levels in stimulant psychosis: Relationship to symptom severity, catecholamines and hyperkinesia. Am. J. Addict. 2004, 13, 461–470, doi:10.1080/10550490490512834.
[49]  Rosse, R.; Deutsch, S.; Chilton, M. Cocaine addicts prone to cocaine-induced psychosis have lower body mass index than cocaine addicts resistant to cocaine-induced psychosis—Implications for the cocaine model of psychosis proneness. Isr. J. Psychiatry Relat. Sci. 2005, 42, 45–50.
[50]  Boutros, N.N.; Gooding, D.; Sundaresan, K.; Burroughs, S.; Johanson, C.E. Cocaine-dependence and cocaine-induced paranoia and mid-latency auditory evoked responses and sensory gating. Psychiatry Res. 2006, 145, 147–154, doi:10.1016/j.psychres.2006.02.005.
[51]  Tang, Y.L.; Kranzler, H.R.; Gelernter, J.; Farrer, L.A.; Cubells, J.F. Comorbid psychiatric diagnoses and their association with cocaine-induced psychosis in cocaine-dependent subjects. Am. J. Addict. 2007, 16, 343–351, doi:10.1080/10550490701525723.
[52]  Merlo, L.J.; Carnes, P.J.; Gold, M.S. Response to “Comorbid psychiatric diagnoses and their association with cocaine-induced psychosis in cocaine-dependent subjects”. Am. J. Addict. 2008, 17, 247–248, doi:10.1080/10550490802019857.
[53]  Tang, Y.L.; Kranzler, H.R.; Gelernter, J.; Farrer, L.A.; Pearson, D.; Cubells, J.F. Transient Cocaine-Associated Behavioral Symptoms Rated with a New Instrument, the Scale for Assessment of Positive Symptoms for Cocaine-Induced Psychosis (SAPS-CIP). Am. J. Addict. 2009, 18, 339–345.
[54]  Roncero, C.; Daigre, C.; Gonzalvo, B.; Valero, S.; Castells, X.; Grau-López, L.; Eiroa-Orosa, F.J.; Casas, M. Risk factors for cocaine-induced psychosis in cocaine-dependent patients. Eur. Psychiatry 2013, 28, 141–146, doi:10.1016/j.eurpsy.2011.06.012.
[55]  Vorspan, F.; Bloch, V.; Brousse, G.; Bellais, L.; Gascon, J.; Lépine, J.P. Prospective assessment of transient cocaine-induced psychotic symptoms in a clinical setting. Am. J. Addict. 2011, 20, 535–537, doi:10.1111/j.1521-0391.2011.00181.x.
[56]  Fiorentini, A.; Volonteri, L.S.; Dragogna, F.; Rovera, C.; Maffini, M.; Mauri, M.C.; Altamura, C.A. Substance-Induced Psychoses: A Critical Review of the Literature. Curr. Drug Abuse Rev. 2011, 4, 228–240, doi:10.2174/1874473711104040228.
[57]  Vorspan, F.; Brousse, G.; Bloch, V.; Bellais, L.; Romo, L.; Guillem, E.; Coeuru, P.; Lépine, J.P. Cocaine-induced psychotic symptoms in French cocaine addicts. Psychiatry Res. 2013, 200, 1074–1076.
[58]  Delavenne, H.; Garcia, F.D.; Lacoste, J.; Cortese, S.; Charles-Nicolas, A.; Ballon, N. Psychosis in a cocaine-dependent patient with ADHD during treatment with methylphenidate. Gen. Hosp. Psychiatry 2012, doi:10.1016/j.genhosppsych.2012.05.010.
[59]  Davis, M. The mammalian startle response. In Neural Mechanisms of Startle Behavior; Plenum Press: New York, NY, USA, 1984; pp. 287–342.
[60]  Valasamis, B.; Schmid, S. Habituation and Prepulse Inhibition of Acoustic Startle in Rodents. J. Vis. Exp. 2011, doi:10.3791/3446.
[61]  Lang, P.J.; Davis, M. Emotion, motivation, and the brain: Reflex foundations in animal and human research. Prog. Brain Res. 2006, 156, 3–29, doi:10.1016/S0079-6123(06)56001-7.
[62]  Ilango, A.; Shumake, J.; Wetzel, W.; Scheich, H.; Ohl, F.W. The role of dopamine in the context of aversive stimuli with particular reference to acoustically signaled avoidance learning. Front. Neurosci. 2012, 6, 132.
[63]  Parker, K.J.; Hyde, S.A.; Buckmaster, C.L.; Tanaka, S.M.; Brewster, K.K.; Schatzberg, A.F.; Lyons, D.M.; Woodward, S.H. Somatic and neuroendocrine responses to standard and biologically salient acoustic startle stimuli in monkeys. Psychoneuroendocrinology 2011, 36, 547–556, doi:10.1016/j.psyneuen.2010.08.009.
[64]  Hoffman, H.S.; Ison, J.R. Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychol. Rev. 1980, 87, 175–189, doi:10.1037/0033-295X.87.2.175.
[65]  Peak, H. Time order error in successive judgments and in reflexes. I. Inhibition of the judgment and the reflex. J. Exp. Psychol. 1939, 25, 535–565, doi:10.1037/h0063056.
[66]  Hoffman, H.S.; Fleshler, M. Startle reaction: Modification by background acoustic stimulation. Science 1963, 141, 928–930.
[67]  Hoffman, H.S.; Searle, J.L. Acoustic variables in the modification of startle reaction in the rat. J. Comp. Physiol. Psychol. 1965, 60, 53–58, doi:10.1037/h0022325.
[68]  Pickney, L.A. Inhibition of the startle reflex in the rat by prior tactile stimulation. Anim. Learn. Behav. 1976, 4, 467–472, doi:10.3758/BF03214441.
[69]  Ison, J.R.; Hammond, G.R. Modification of the startle reflex in the rat by changes in the auditory and visual environments. J. Comp. Physiol. Psychol. 1971, 75, 435–452, doi:10.1037/h0030934.
[70]  Ray, W.J.; Molnar, C.; Aikins, D.; Yamasaki, A.; Newman, M.G.; Castonguay, L.; Borkovec, T.D. Startle response in generalized anxiety disorder. Depress Anxiety 2009, 26, 147–154, doi:10.1002/da.20479.
[71]  Conzelmann, A.; Mucha, R.F.; Jacob, C.P.; Weyers, P.; Romanos, J.; Gerdes, A.B.; Baehne, C.G.; Boreatti-Hümmer, A.; Heine, M.; Alpers, G.W.; et al. Abnormal affective responsiveness in attention-deficit/hyperactivity disorder: Subtype differences. Biol. Psychiatry 2009, 65, 578–585, doi:10.1016/j.biopsych.2008.10.038.
[72]  Geyer, M.A.; Braff, D.L. Startle habituation and sensorimotor gating in schizophrenia and related animal models. Schizophr. Bull. 1987, 13, 643–668, doi:10.1093/schbul/13.4.643.
[73]  Swerdlow, N.R.; Caine, S.B.; Braff, D.L.; Geyer, M.A. The neural substrates of sensorimotor gating of the startle reflex: A review of recent findings and their implications. J. Psychopharmacol. 1992, 6, 176–190, doi:10.1177/026988119200600210.
[74]  Ralph, R.J.; Paulus, M.P.; Fumagalli, F.; Caron, M.G.; Geyer, M.A. Prepulse inihibition deficits and perseverative motor patterns in dopamine transporter knock-out mice: Differential effects of D1 and D2 receptor antagonists. J. Neurosci. 2001, 21, 305–313.
[75]  Faraday, M.M.; Grunberg, N.E. The importance of acclimation in acoustic startle amplitude and pre-pulse inhibition testing of male and female rats. Pharmacol. Biochem. Behav. 2000, 66, 375–381, doi:10.1016/S0091-3057(00)00212-4.
[76]  Doherty, J.M.; Masten, V.L.; Powell, S.B.; Ralph, R.J.; Klamer, D.; Low, M.J.; Geyer, M.A. Contributions of dopamine D1, D2, and D3 receptor subtypes to the disruptive effects of cocaine on prepulse inhibition in mice. Neuropsychopharmacology 2008, 33, 2648–2656, doi:10.1038/sj.npp.1301657.
[77]  Meincke, U.; Light, G.A.; Geyer, M.A.; Braff, D.L.; Gouzoulis-Mayfrank, E. Sensitization and habituation of the acoustic startle reflex in patients with schizophrenia. Psychiatry Res. 2004, 126, 51–61, doi:10.1016/j.psychres.2004.01.003.
[78]  Qui?ones-Jenab, V.; Ho, A.; Schlussman, S.D.; Franck, J.; Kreek, M.J. Estrous cycle differences in cocaine-induced stereotypic and locomotor behaviors in Fischer rats. Behav. Brain Res. 1999, 101, 15–20, doi:10.1016/S0166-4328(98)00073-4.
[79]  Qui?ones-Jenab, V.; Perrotti, L.I.; Fabian, S.J.; Chin, J.; Russo, S.J.; Jenab, S. Endocrinological basis of sex differences in cocaine-induced behavioral responses. Ann. N. Y. Acad. Sci. 2001, 937, 140–171.
[80]  Broderick, P.A.; Ho, H.; Huang, J.; Wat, K.; Shahidullah, J.; Murthy, V.; Wenning, L.; Buchheim, L. Caffeine may neuroprotect against cocaine-induced dopamine release in accumbens of female rats. Soc. Neurosci. Abstr. 2007, 33. Program Poster 767.7.
[81]  Nesbitt, J.; Raju, C.; Vidal, L.; Alimova, A.; Steiner, J.; Broderick, P.A.; Friedman, E. Sexual dimorphism studies of cocaine and caffeine in conditioned place preference: Estrous cycle stage and open-field behaviors. Soc. Neurosci. Abstr. 2008, 34. Program Poster 561.23/FF33.
[82]  Broderick, P.A. Studies of oxidative stress mechanisms using a morphine/ascorbate animal model and novel N-stearoyl cerebroside and laurate sensors. J. Neural Transm. 2008, 115, 7–17, doi:10.1007/s00702-007-0809-2.
[83]  Lynch, W.J.; Roth, M.E.; Mickelberg, J.L.; Carroll, M.E. Role of estrogen in the acquisition of intravenously self-administered cocaine in female rats. Pharmacol. Biochem. Behav. 2001, 68, 641–646, doi:10.1016/S0091-3057(01)00455-5.
[84]  Marcondes, F.K.; Bianchi, F.J.; Tanno, A.P. Determination of the estrous cycle phases of rats: Some helpful considerations. Braz. J. Biol. 2002, 62, 609–614, doi:10.1590/S1519-69842002000400008.
[85]  Becker, J.B.; Molenda, H.; Hummer, D.L. Gender Differences in the Behavioral Responses to Cocaine and Amphetamine. Ann. N. Y. Acad. Sci. 2001, 937, 172–187, doi:10.1111/j.1749-6632.2001.tb03564.x.
[86]  Becker, J.B.; Hu, M. Sex differences in drug abuse. Front. Neuroendocrinol. 2008, 29, 36–47, doi:10.1016/j.yfrne.2007.07.003.
[87]  Wissman, A.M.; McCollum, A.F.; Huang, G.-Z.; Nikrodhanond, A.A.; Woolley, C.S. Sex differences and effects of cocaine on excitatory synapses in the nucleus accumbens. Neuropharmacology 2011, 61, 217–227, doi:10.1016/j.neuropharm.2011.04.002.
[88]  Jackson, L.; Robinson, T.; Becker, J. Sex Differences and Hormonal Influences on Acquisition of Cocaine Self-Administration in Rats. Neuropsychopharmacology 2006, 31, 129–138.
[89]  Lehmann, J.; Pryce, C.; Feldon, J. Sex differences in the acoustic startle response and prepulse inhibition in Wistar rats. Behav. Brain Res. 1999, 104, 113–117, doi:10.1016/S0166-4328(99)00058-3.
[90]  B?aszczyk, J.; Tajchert, K. Sex and strain differences of acoustic startle reaction development in adolescent albino Wistar and hooded rats. Acta Neurobiol. Exp. (Wars.) 1996, 56, 919–925.
[91]  Plappert, C.F.; Rodenbücher, A.M.; Pilz, P.K. Effects of sex and estrous cycle on modulation of the acoustic startle response in mice. Physiol. Behav. 2005, 84, 585–594, doi:10.1016/j.physbeh.2005.02.004.
[92]  Fletcher, P.J.; Selhi, Z.F.; Azampanah, A.; Sills, T.L. Reduced brain serotonin activity disrupts prepulse inhibition of the acoustic startle reflex. Effects of 5,7-dihydroxytryptamine and p-chlorophenylalanine. Neuropsychopharmacology 2001, 24, 399–409, doi:10.1016/S0893-133X(00)00215-3.
[93]  Prinssen, E.P.; Assié, M.B.; Koek, W.; Kleven, M.S. Depletion of 5-HT disrupts prepulse inhibition in rats: Dependence on the magnitude of depletion, and reversal by a 5-HT precursor. Neuropsychopharmacology 2002, 26, 340–347, doi:10.1016/S0893-133X(01)00348-7.
[94]  Semenova, S.; Hoyer, D.; Geyer, M.A.; Markou, A. Somatostatin-28 modulates prepulse inhibition of the acoustic startle response, reward processes and spontaneous locomotor activity in rats. Neuropeptides 2010, 44, 421–429, doi:10.1016/j.npep.2010.04.008.
[95]  Kinkead, B.; Yan, F.; Owens, M.J.; Nemeroff, C.B. Endogenous neurotensin is involved in estrous cycle related alterations in prepulse inhibition of the acoustic startle reflex in female rats. Psychoneuroendocrinology 2008, 33, 178–187, doi:10.1016/j.psyneuen.2007.11.005.
[96]  Metherate, R.; Intskirveli, I.; Kawai, H.D. Nicotinic filtering of sensory processing in auditory cortex. Front. Behav. Neurosci. 2012, 6, 1–8.
[97]  Rudomin, P. Central control of information transmission through the intraspinal arborizations of sensory fibers examined 100 years after Ramón y Cajal. Prog. Brain Res. 2002, 136, 409–421, doi:10.1016/S0079-6123(02)36033-3.
[98]  Rose, P.K.; Scott, S.H. Sensory-motor control: A long-awaited behavioral correlate of presynaptic inhibition. Nat. Neurosci. 2003, 6, 1243–1245, doi:10.1038/nn1203-1243.
[99]  Seki, K.; Perlmutter, S.I.; Fetz, E.E. Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nat. Neurosci. 2003, 6, 1309–1316, doi:10.1038/nn1154.
[100]  Koch, M. The neurobiology of startle. Prog. Neurobiol. 1999, 59, 107–128, doi:10.1016/S0301-0082(98)00098-7.
[101]  Koch, M.; Friauf, E. Glycine receptors in the caudal pontine reticular formation: Are they important for the inhibition of the acoustic startle response? Brain Res. 1995, 671, 63–72, doi:10.1016/0006-8993(94)01309-6.
[102]  Koch, M.; Schnitzler, H.U. The acoustic startle response in rats—circuits mediating evocation, inhibition and potentiation. Behav. Brain Res. 1997, 89, 35–49, doi:10.1016/S0166-4328(97)02296-1.
[103]  Koch, M.; Kungel, M.; Herbert, H. Cholinergic neurons in the pedunculopontine tegmental nucleus are involved in the mediation of prepulse inhibition of the acoustic startle response in the rat. Exp. Brain Res. 1993, 97, 71–82.
[104]  Koch, M.; Fendt, M.; Kretschmer, B.D. Role of the substantia nigra pars reticulata in sensorimotor gating, measured by prepulse inhibition of startle in rats. Behav. Brain Res. 2000, 117, 153–162, doi:10.1016/S0166-4328(00)00299-0.
[105]  Fendt, M.; Li, L.; Yeomans, J.S. Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacology (Berl.) 2001, 156, 216–224, doi:10.1007/s002130100794.
[106]  Leumann, L.; Sterchi, D.; Vollenweider, F.; Ludewig, K.; Früh, H. A neural network approach to the acoustic startle reflex and prepulse inhibition. Brain Res. Bull. 2001, 56, 101–110, doi:10.1016/S0361-9230(01)00607-4.
[107]  Leitner, D.S.; Cohen, M.E. Role of the inferior colliculus in the inhibition of acoustic startle in the rat. Physiol. Behav. 1985, 34, 65–70, doi:10.1016/0031-9384(85)90079-4.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413