全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MicroRNAs in Acute Myeloid Leukemia and Other Blood Disorders

DOI: 10.1155/2012/603830

Full-Text   Cite this paper   Add to My Lib

Abstract:

Common blood disorders include hematopoietic cell malignancies or leukemias and plasma cell dyscrasia, all of which have associated microRNA abnormalities. In this paper, we discuss several leukemias including acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL) and identify altered microRNAs and their targets. Immune disorders with altered blood levels of antibodies include autoimmune disorders, such as systemic lupus erythematosus (SLE) with associated anti-self-autoantibodies and immunoglobulin A nephropathy (IgAN) also have related microRNA abnormalities. The alterations in microRNAs may serve as therapeutic targets in these blood disorders. 1. Introduction MicroRNAs are small (20–22?nt), evolutionarily conserved, noncoding single-stranded RNAs discovered in the 1990s [1, 2], functioning to target 3′ untranslated region (UTR) of mRNAs in antisense sequence specific way and regulate genes posttranscriptionally for degradation or translation suppression. MicroRNAs target 1–3% of all eukaryotic genes yet regulating ~30% of protein-coding genes [3]. The miRNAs are first transcribed by RNA polymerase II in the nucleus as large primary transcript (pri-miRNA) [4], either from independent genes or from clustered genes encoding several miRNAs [5] and further processed into ~70?nt pre-miRNA with hairpin structure by Drosha, a RNase III type endonuclease (RN3) in the nucleus. Alternatively, in the nucleus, a small class of “mintron” without the stem-loop and the flanking single-strand structure as in pri-miRNA required for Drosha processing, could be generated by passing Drosha-dependent pathway [6]. In the cytoplasm, ~20?bp miRNA/miRNA* duplex are generated by Dicer, another RN3 endonuclease. One of the miRNA duplex strands is further incorporated into protein-RNA complex called RNA-induced silencing complex (RISC), although in some cases, both arms of the pre-miRNA hairpin could generate mature miRNAs [7–9]. miRNAs interact with target mRNA by sequence complementarity, and in perfect base pairing usually triggers endonucleolytic mRNA cleavage [10]; however, in most situations, such base pairing is imperfect, resulting in translational suppression. The key component of this RISC machinery is Ago protein family (Ago 1–4), but only Ago 2 is known to have the catalytic enzyme function [11, 12]. Besides Ago proteins, GW182 protein is also recruited to the RISC complex and together localize in cytoplasmic foci called processing bodies (P bodies or GW bodies), where mRNA is sequestered from being translated [13–16]. There are different experimental

References

[1]  R. C. Lee, R. L. Feinbaum, and V. Ambros, “The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14,” Cell, vol. 75, no. 5, pp. 843–854, 1993.
[2]  B. Wightman, I. Ha, and G. Ruvkun, “Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans,” Cell, vol. 75, no. 5, pp. 855–862, 1993.
[3]  W. Filipowicz, S. N. Bhattacharyya, and N. Sonenberg, “Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?” Nature Reviews Genetics, vol. 9, no. 2, pp. 102–114, 2008.
[4]  V. N. Kim, “MicroRNA biogenesis: coordinated cropping and dicing,” Nature Reviews Molecular Cell Biology, vol. 6, no. 5, pp. 376–385, 2005.
[5]  M. Lagos-Quintana, R. Rauhut, W. Lendeckel, and T. Tuschl, “Identification of novel genes coding for small expressed RNAs,” Science, vol. 294, no. 5543, pp. 853–858, 2001.
[6]  J. G. Ruby, C. H. Jan, and D. P. Bartel, “Intronic microRNA precursors that bypass drosha processing,” Nature, vol. 448, no. 7149, pp. 83–86, 2007.
[7]  N. Bushati and S. M. Cohen, “MicroRNA functions,” Annual Review of Cell and Developmental Biology, vol. 23, pp. 175–205, 2007.
[8]  T. M. Rana, “Illuminating the silence: understanding the structure and function of small RNAs,” Nature Reviews Molecular Cell Biology, vol. 8, no. 1, pp. 23–36, 2007.
[9]  T. Du and P. D. Zamore, “MicroPrimer: the biogenesis and function of microRNA,” Development, vol. 132, no. 21, pp. 4645–4652, 2005.
[10]  M. W. Jones-Rhoades, D. P. Bartel, and B. Bartel, “MicroRNAs and their regulatory roles in plants,” Annual Review of Plant Biology, vol. 57, pp. 19–53, 2006.
[11]  J. Liu, M. A. Carmell, F. V. Rivas et al., “Argonaute2 is the catalytic engine of mammalian RNAi,” Science, vol. 305, no. 5689, pp. 1437–1441, 2004.
[12]  G. Meister, M. Landthaler, A. Patkaniowska, Y. Dorsett, G. Teng, and T. Tuschl, “Human argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs,” Molecular Cell, vol. 15, no. 2, pp. 185–197, 2004.
[13]  T. Eystathioy, A. Jakymiw, E. K. Chan, B. Séraphin, N. Cougot, and M. J. Fritzler, “The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies,” RNA, vol. 9, no. 10, pp. 1171–1173, 2003.
[14]  L. Ding and M. Han, “GW182 family proteins are crucial for microRNA-mediated gene silencing,” Trends in Cell Biology, vol. 17, no. 8, pp. 411–416, 2007.
[15]  A. Eulalio, I. Behm-Ansmant, and E. Izaurralde, “P bodies: at the crossroads of post-transcriptional pathways,” Nature Reviews Molecular Cell Biology, vol. 8, no. 1, pp. 9–22, 2007.
[16]  R. Parker and U. Sheth, “P bodies and the control of mRNA translation and degradation,” Molecular Cell, vol. 25, no. 5, pp. 635–646, 2007.
[17]  J. G. Doench and P. A. Sharp, “Specificity of microRNA target selection in translational repression,” Genes & Development, vol. 18, no. 5, pp. 504–511, 2004.
[18]  J. Brennecke, A. Stark, R. B. Russell, and S. M. Cohen, “Principles of microRNA-target recognition,” PLoS Biology, vol. 3, no. 3, article e85, 2005.
[19]  B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005.
[20]  A. Grimson, K. K. Farh, W. K. Johnston, P. Garrett-Engele, L. P. Lim, and D. P. Bartel, “MicroRNA targeting specificity in mammals: determinants beyond seed pairing,” Molecular Cell, vol. 27, no. 1, pp. 91–105, 2007.
[21]  A. Esquela-Kerscher and F. J. Slack, “Oncomirs—microRNAs with a role in cancer,” Nature Reviews Cancer, vol. 6, no. 4, pp. 259–269, 2006.
[22]  D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004.
[23]  G. A. Calin, C. G. Liu, C. Sevignani et al., “MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 32, pp. 11755–11760, 2004.
[24]  P. S. Eis, W. Tam, L. Sun et al., “Accumulation of miR-155 and BIC RNA in human B cell lymphomas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 10, pp. 3627–3632, 2005.
[25]  E. Barbarotto and G. A. Calin, “Potential therapeutic applications of miRNA-based technology in hematological malignancies,” Current Pharmaceutical Design, vol. 14, no. 21, pp. 2040–2050, 2008.
[26]  C. P. Arnold, R. Tan, B. Zhou et al., “MicroRNA programs in normal and aberrant stem and progenitor cells,” Genome Research, vol. 21, no. 5, pp. 798–810, 2011.
[27]  J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005.
[28]  R. M. O'Connell, D. S. Rao, A. A. Chaudhuri et al., “Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder,” Journal of Experimental Medicine, vol. 205, no. 3, pp. 585–594, 2008.
[29]  Y. C. Han, C. Y. Park, G. Bhagat et al., “MicroRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia,” Journal of Experimental Medicine, vol. 207, no. 3, pp. 475–489, 2010.
[30]  G. A. Calin, C. D. Dumitru, M. Shimizu et al., “Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15524–15529, 2002.
[31]  E. Salerno, B. J. Scaglione, F. D. Coffman et al., “Correcting miR-15a/16 genetic defect in New Zealand black mouse model of CLL enhances drug sensitivity,” Molecular Cancer Therapeutics, vol. 8, no. 9, pp. 2684–2692, 2009.
[32]  U. Klein, M. Lia, M. Crespo et al., “The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia,” Cancer Cell, vol. 17, no. 1, pp. 28–40, 2010.
[33]  R. M. O'Connell, A. A. Chaudhuri, D. S. Rao, W. S. Gibson, A. B. Balazs, and D. Baltimore, “MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 32, pp. 14235–14240, 2010.
[34]  S. Costinean, N. Zanesi, Y. Pekarsky et al., “Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 18, pp. 7024–7029, 2006.
[35]  R. Liao, J. Sun, L. Zhang et al., “MicroRNAs play a role in the development of human hematopoietic stem cells,” Journal of Cellular Biochemistry, vol. 104, no. 3, pp. 805–817, 2008.
[36]  K. D. Taganov, M. P. Boldin, K. J. Chang, and D. Baltimore, “NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 33, pp. 12481–12486, 2006.
[37]  T. Ruggiero, M. Trabucchi, F. De Santa et al., “LPS induces KH-type splicing regulatory protein-dependent processing of microRNA-155 precursors in macrophages,” FASEB Journal, vol. 23, no. 9, pp. 2898–2908, 2009.
[38]  M. Ceppi, P. M. Pereira, I. Dunand-Sauthier et al., “MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 8, pp. 2735–2740, 2009.
[39]  B. Tang, B. Xiao, Z. Liu et al., “Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation,” FEBS Letters, vol. 584, no. 8, pp. 1481–1486, 2010.
[40]  C. E. McCoy, F. J. Sheedy, J. E. Qualls et al., “IL-10 inhibits miR-155 induction by toll-like receptors,” The Journal of Biological Chemistry, vol. 285, no. 27, pp. 20492–20498, 2010.
[41]  B. S. Cobb, T. B. Nesterova, E. Thompson et al., “T cell lineage choice and differentiation in the absence of the RNase III enzyme dicer,” Journal of Experimental Medicine, vol. 201, no. 9, pp. 1367–1373, 2005.
[42]  S. A. Muljo, K. M. Ansel, C. Kanellopoulou, D. M. Livingston, A. Rao, and K. Rajewsky, “Aberrant T cell differentiation in the absence of dicer,” Journal of Experimental Medicine, vol. 202, no. 2, pp. 261–269, 2005.
[43]  S. B. Koralov, S. A. Muljo, G. R. Galler et al., “Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage,” Cell, vol. 132, no. 5, pp. 860–874, 2008.
[44]  A. Rodriguez, E. Vigorito, S. Clare et al., “Requirement of bic/microRNA-155 for normal immune function,” Science, vol. 316, no. 5824, pp. 608–611, 2007.
[45]  T. H. Thai, D. P. Calado, S. Casola et al., “Regulation of the germinal center response by microRNA-155,” Science, vol. 316, no. 5824, pp. 604–608, 2007.
[46]  E. Vigorito, K. L. Perks, C. Abreu-Goodger et al., “MicroRNA-155 regulates the generation of immunoglobulin class-switched plasma cells,” Immunity, vol. 27, no. 6, pp. 847–859, 2007.
[47]  S. Kohlhaas, O. A. Garden, C. Scudamore, M. Turner, K. Okkenhaug, and E. Vigorito, “Cutting edge: the foxp3 target miR-155 contributes to the development of regulatory T cells1,” Journal of Immunology, vol. 182, no. 5, pp. 2578–2582, 2009.
[48]  T. Eystathioy, E. K. Chan, S. A. Tenenbaum, J. D. Keene, K. Griffith, and M. J. Fritzler, “A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles,” Molecular Biology of the Cell, vol. 13, no. 4, pp. 1338–1351, 2002.
[49]  R. A. Bhanji, T. Eystathioy, E. K. Chan, D. B. Bloch, and M. J. Fritzler, “Clinical and serological features of patients with autoantibodies to GW/P bodies,” Clinical Immunology, vol. 125, no. 3, pp. 247–256, 2007.
[50]  Y. Tang, X. Luo, H. Cui et al., “MicroRNA-146a contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins,” Arthritis & Rheumatism, vol. 60, no. 4, pp. 1065–1075, 2009.
[51]  R. Dai, Y. Zhang, D. Khan et al., “Identification of a common lupus disease-associated microRNA expression pattern in three different murine models of lupus,” PloS ONE, vol. 5, no. 12, article e14302, 2010.
[52]  E. Tili, J. J. Michaille, D. Wernicke et al., “Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 12, pp. 4908–4913, 2011.
[53]  A. Ota, H. Tagawa, S. Karnan et al., “Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma,” Cancer Research, vol. 64, no. 9, pp. 3087–3095, 2004.
[54]  B. Zhang, X. Pan, G. P. Cobb, and T. A. Anderson, “microRNAs as oncogenes and tumor suppressors,” Developmental Biology, vol. 302, no. 1, pp. 1–12, 2007.
[55]  H. Tagawa and M. Seto, “A microRNA cluster as a target of genomic amplification in malignant lymphoma,” Leukemia, vol. 19, no. 11, pp. 2013–2016, 2005.
[56]  C. Xiao, L. Srinivasan, D. P. Calado et al., “Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes,” Nature Immunology, vol. 9, no. 4, pp. 405–414, 2008.
[57]  V. Kumar, A. K. Abbas, J. C. Aster, and S. L. Robbins, Robbins Basic Pathology, Elsevier Saunders, Philadelphia, Pa, USA, 9th edition, 2013.
[58]  D. L?ffler, K. Brocke-Heidrich, G. Pfeifer et al., “Interleukin-6-dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer,” Blood, vol. 110, no. 4, pp. 1330–1333, 2007.
[59]  D. Ronchetti, M. Lionetti, L. Mosca, et al., “An integrative genomic approach reveals coordinated expression of intronic miR-335, miR-342, and miR-561 with deregulated host genes in multiple myeloma,” BMC Medical Genomics, vol. 1, article 37, 2008.
[60]  F. Pichiorri, S. S. Suh, M. Ladetto et al., “MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 35, pp. 12885–12890, 2008.
[61]  L. Chen, C. Li, R. Zhang et al., “MiR-17-92 cluster microRNAs confers tumorigenicity in multiple myeloma,” Cancer Letters, vol. 309, no. 1, pp. 62–70, 2011.
[62]  A. M. Roccaro, A. Sacco, B. Thompson et al., “MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma,” Blood, vol. 113, no. 26, pp. 6669–6680, 2009.
[63]  M. Lerner, M. Harada, J. Lovén et al., “DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1,” Experimental Cell Research, vol. 315, no. 17, pp. 2941–2952, 2009.
[64]  M. Kumar, Z. Lu, A. A. Takwi et al., “Negative regulation of the tumor suppressor p53 gene by microRNAs,” Oncogene, vol. 30, no. 7, pp. 843–853, 2011.
[65]  F. Pichiorri, S. S. Suh, A. Rocci et al., “Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development,” Cancer Cell, vol. 18, no. 4, pp. 367–381, 2010.
[66]  K. Y. Wong, C. C. So, F. Loong et al., “Epigenetic inactivation of the miR-124-1 in haematological malignancies,” PLoS ONE, vol. 6, no. 4, article e19027, 2011.
[67]  K. Y. Wong, R. Liang, C. C. So, D. Y. Jin, J. F. Costello, and C. S. Chim, “Epigenetic silencing of MIR203 in multiple myeloma,” British Journal of Haematology, vol. 154, no. 5, pp. 569–578, 2011.
[68]  Y. K. Zhang, H. Wang, Y. Leng, et al., “Overexpression of microRNA-29b induces apoptosis of multiple myeloma cells through down regulating Mcl-1,” Biochemical and Biophysical Research Communications, vol. 414, no. 1, pp. 233–239, 2011.
[69]  V. J. Craig, S. B. Cogliatti, H. Rehrauer, T. Wündisch, and A. Müller, “Epigenetic silencing of microRNA-203 dysregulates ABL1 expression and drives helicobacter-associated gastric lymphomagenesis,” Cancer Research, vol. 71, no. 10, pp. 3616–3624, 2011.
[70]  J. Cai, X. Liu, J. Cheng, et al., “MicroRNA-200 is commonly repressed in conjunctival MALT lymphoma, and targets cyclin E2,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 250, no. 4, pp. 523–531, 2012.
[71]  M. Tomana, J. Novak, B. A. Julian, K. Matousovic, K. Konecny, and J. Mestecky, “Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies,” The Journal of Clinical Investigation, vol. 104, no. 1, pp. 73–81, 1999.
[72]  G. Wang, B. C. Kwan, F. M. Lai, K. M. Chow, P. K. Li, and C. C. Szeto, “Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy,” Disease Markers, vol. 30, no. 4, pp. 171–179, 2011.
[73]  I. Bhatti, A. Lee, J. Lund, and M. Larvin, “Small RNA: a large contributor to carcinogenesis?” Journal of Gastrointestinal Surgery, vol. 13, no. 7, pp. 1379–1388, 2009.
[74]  S. P. Nana-Sinkam and C. M. Croce, “MicroRNA in chronic lymphocytic leukemia: transitioning from laboratory-based investigation to clinical application,” Cancer Genetics and Cytogenetics, vol. 203, no. 2, pp. 127–133, 2010.
[75]  B. L. Betz and J. L. Hess, “Acute myeloid leukemia diagnosis in the 21st century,” Archives of Pathology and Laboratory Medicine, vol. 134, no. 10, pp. 1427–1433, 2010.
[76]  K. Mrózek, N. A. Heerema, and C. D. Bloomfield, “Cytogenetics in acute leukemia,” Blood Reviews, vol. 18, no. 2, pp. 115–136, 2004.
[77]  K. Mrózek, G. Marcucci, P. Paschka, S. P. Whitman, and C. D. Bloomfield, “Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification?” Blood, vol. 109, no. 2, pp. 431–448, 2007.
[78]  G. Marcucci, K. Mrózek, and C. D. Bloomfield, “Molecular heterogeneity and prognostic biomarkers in adults with acute myeloid leukemia and normal cytogenetics,” Current Opinion in Hematology, vol. 12, no. 1, pp. 68–75, 2005.
[79]  A. Renneville, C. Roumier, V. Biggio et al., “Cooperating gene mutations in acute myeloid leukemia: a review of the literature,” Leukemia, vol. 22, no. 5, pp. 915–931, 2008.
[80]  S. Mi, J. Lu, M. Sun et al., “MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 50, pp. 19971–19976, 2007.
[81]  Y. Wang, Z. Li, C. He et al., “MicroRNAs expression signatures are associated with lineage and survival in acute leukemias,” Blood Cells, Molecules, and Diseases, vol. 44, no. 3, pp. 191–197, 2010.
[82]  R. Garzon, S. Volinia, C. G. Liu et al., “MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia,” Blood, vol. 111, no. 6, pp. 3183–3189, 2008.
[83]  S. M. Gao, J. Yang, C. Chen, et al., “miR-15a/16-1 enhances retinoic acid-mediated differentiation of leukemic cells and is up-regulated by retinoic acid,” Leukemia & Lymphoma, vol. 52, no. 12, pp. 2365–2371, 2011.
[84]  M. Jongen-Lavrencic, S. M. Sun, M. K. Dijkstra, P. J. Valk, and B. L?wenberg, “MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia,” Blood, vol. 111, no. 10, pp. 5078–5085, 2008.
[85]  M. Alcalay, E. Tiacci, R. Bergomas et al., “Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance,” Blood, vol. 106, no. 3, pp. 899–902, 2005.
[86]  S. Yekta, I. H. Shih, and D. P. Bartel, “MicroRNA-directed cleavage of HOXB8 mRNA,” Science, vol. 304, no. 5670, pp. 594–596, 2004.
[87]  R. Garzon, M. Garofalo, M. P. Martelli et al., “Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 10, pp. 3945–3950, 2008.
[88]  S. P. Whitman, K. Maharry, M. D. Radmacher et al., “FLT3 internal tandem duplication associates with adverse outcome and gene- and microRNA-expression signatures in patients 60 years of age or older with primary cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study,” Blood, vol. 116, no. 18, pp. 3622–3626, 2010.
[89]  Z. Li, J. Lu, M. Sun et al., “Distinct microRNA expression profiles in acute myeloid leukemia with common translocations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 40, pp. 15535–15540, 2008.
[90]  A. Dixon-McIver, P. East, C. A. Mein et al., “Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia,” PLoS ONE, vol. 3, no. 5, article e2141, 2008.
[91]  X. Wang, E. Gocek, C. G. Liu, and G. P. Studzinski, “MicroRNAs181 regulate the expression of p27Kip1 in human myeloid leukemia cells induced to differentiate by 1,25-dihydroxyvitamin D3,” Cell Cycle, vol. 8, no. 5, pp. 736–741, 2009.
[92]  Y. D. Zhu, L. Wang, C. Sun, et al., “Distinctive microRNA signature is associated with the diagnosis and prognosis of acute leukemia,” Medical Oncology. In press.
[93]  M. Hallek, B. D. Cheson, D. Catovsky et al., “Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the international workshop on chronic lymphocytic leukemia updating the National Cancer Institute-working group 1996 guidelines,” Blood, vol. 111, no. 12, pp. 5446–5456, 2008.
[94]  J. G. Gribben and S. O'Brien, “Update on therapy of chronic lymphocytic leukemia,” Journal of Clinical Oncology, vol. 29, no. 5, pp. 544–550, 2011.
[95]  H. D?hner, S. Stilgenbauer, A. Benner et al., “Genomic aberrations and survival in chronic lymphocytic leukemia,” The New England Journal of Medicine, vol. 343, no. 26, pp. 1910–1916, 2000.
[96]  G. A. Calin and C. M. Croce, “Genomics of chronic lymphocytic leukemia microRNAs as new players with clinical significance,” Seminars in Oncology, vol. 33, no. 2, pp. 167–173, 2006.
[97]  E. Salerno, B. J. Scaglione, F. D. Coffman et al., “Correcting miR-15a/16 genetic defect in New Zealand black mouse model of CLL enhances drug sensitivity,” Molecular Cancer Therapeutics, vol. 8, no. 9, pp. 2684–2692, 2009.
[98]  A. Cimmino, G. A. Calin, M. Fabbri et al., “miR-15 and miR-16 induce apoptosis by targeting BCL2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 39, pp. 13944–13949, 2005.
[99]  E. S. Raveche, E. Salerno, B. J. Scaglione et al., “Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice,” Blood, vol. 109, no. 12, pp. 5079–5086, 2007.
[100]  Y. Pekarsky, U. Santanam, A. Cimmino et al., “Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181,” Cancer Research, vol. 66, no. 24, pp. 11590–11593, 2006.
[101]  U. Santanam, N. Zanesi, A. Efanov et al., “Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 27, pp. 12210–12215, 2010.
[102]  M. Fabbri, A. Bottoni, M. Shimizu et al., “Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of b-cell chronic lymphocytic leukemia,” Journal of the American Medical Association, vol. 305, no. 1, pp. 59–67, 2011.
[103]  G. Zauli, R. Voltan, M. G. di Iasio et al., “miR-34a induces the downregulation of both E2F1 and B-Myb oncogenes in leukemic cells,” Clinical Cancer Research, vol. 17, no. 9, pp. 2712–2724, 2011.
[104]  V. Fulci, S. Chiaretti, M. Goldoni et al., “Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia,” Blood, vol. 109, no. 11, pp. 4944–4951, 2007.
[105]  K. Vargova, N. Curik, P. Burda et al., “MYB transcriptionally regulates the miR-155 host gene in chronic lymphocytic leukemia,” Blood, vol. 117, no. 14, pp. 3816–3825, 2011.
[106]  C. H. Lawrie, S. Gal, H. M. Dunlop et al., “Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma,” British Journal of Haematology, vol. 141, no. 5, pp. 672–675, 2008.
[107]  X. Chen, Y. Ba, L. Ma et al., “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases,” Cell Research, vol. 18, no. 10, pp. 997–1006, 2008.
[108]  E. Moussay, K. Wang, J. H. Cho et al., “MicroRNA as biomarkers and regulators in B-cell chronic lymphocytic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 16, pp. 6573–6578, 2011.
[109]  J. R. Finnerty, W. X. Wang, S. S. Hébert, B. R. Wilfred, G. Mao, and P. T. Nelson, “The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases,” Journal of Molecular Biology, vol. 402, no. 3, pp. 491–509, 2010.
[110]  P. T. Nelson, W. X. Wang, G. Mao, et al., “Specific sequence determinants of miR-15/107 microRNA gene group targets,” Nucleic Acids Research, vol. 39, no. 18, pp. 8163–8172, 2011.
[111]  J. Pothof, N. S. Verkaik, W. van Ijcken et al., “MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response,” EMBO Journal, vol. 28, no. 14, pp. 2090–2099, 2009.
[112]  B. Zhang and X. Pan, “RDX induces aberrant expression of microRNAs in mouse brain and liver,” Environmental Health Perspectives, vol. 117, no. 2, pp. 231–240, 2009.
[113]  J. B. Redell, Y. Liu, and P. K. Dash, “Traumatic brain injury alters expression of hippocampal microRNAs: potential regulators of multiple pathophysiological processes,” Journal of Neuroscience Research, vol. 87, no. 6, pp. 1435–1448, 2009.
[114]  R. Kulshreshtha, M. Ferracin, S. E. Wojcik et al., “A microRNA signature of hypoxia,” Molecular and Cellular Biology, vol. 27, no. 5, pp. 1859–1867, 2007.
[115]  K. J. Yin, Z. Deng, M. Hamblin et al., “Peroxisome proliferator-activated receptor δ regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury,” Journal of Neuroscience, vol. 30, no. 18, pp. 6398–6408, 2010.
[116]  T. C. Chang, D. Yu, Y. S. Lee et al., “Widespread microRNA repression by Myc contributes to tumorigenesis,” Nature Genetics, vol. 40, no. 1, pp. 43–50, 2008.
[117]  X. Zhang, X. Chen, J. Lin, et al., “Myc represses miR-15a/miR-16-1 expression through recruitment of HDAC3 in mantle cell and other non-Hodgkin B-cell lymphomas,” Oncogene, vol. 31, no. 24, pp. 3002–3008, 2012.
[118]  G. A. Calin, A. Cimmino, M. Fabbri et al., “MiR-15a and miR-16-1 cluster functions in human leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 13, pp. 5166–5171, 2008.
[119]  Y. Takahashi, A. R. Forrest, E. Maeno, T. Hashimoto, C. O. Daub, and J. Yasuda, “MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines,” PLoS ONE, vol. 4, no. 8, article e6677, 2009.
[120]  R. G. Wickremasinghe, A. G. Prentice, and A. J. Steele, “P53 and notch signaling in chronic lymphocytic leukemia: clues to identifying novel therapeutic strategies,” Leukemia, vol. 25, pp. 1400–1407, 2011.
[121]  A. Albihn, J. I. Johnsen, and M. A. Henriksson, “MYC in oncogenesis and as a target for cancer therapies,” Advances in Cancer Research, vol. 107, pp. 163–224, 2010.
[122]  G. A. Calin, M. Ferracin, A. Cimmino et al., “A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia,” The New England Journal of Medicine, vol. 353, no. 17, pp. 1793–1801, 2005.
[123]  Y. Guo, Z. Chen, L. Zhang et al., “Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma,” Cancer Research, vol. 68, no. 1, pp. 26–33, 2008.
[124]  H. M. Heneghan, N. Miller, R. Kelly, J. Newell, and M. J. Kerin, “Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease,” Oncologist, vol. 15, no. 7, pp. 673–682, 2010.
[125]  D. Li, Y. Zhao, C. Liu et al., “Analysis of MiR-195 and MiR-497 expression, regulation and role in breast cancer,” Clinical Cancer Research, vol. 17, no. 7, pp. 1722–1730, 2011.
[126]  A. Hutloff, K. Büchner, K. Reiter et al., “Involvement of inducible costimulator in the exaggerated memory B cell and plasma cell generation in systemic lupus erythematosus,” Arthritis & Rheumatism, vol. 50, no. 10, pp. 3211–3220, 2004.
[127]  S. Lacotte, H. Dumortier, M. Décossas, J. P. Briand, and S. Muller, “Identification of new pathogenic players in lupus: autoantibody-secreting cells are present in nephritic kidneys of (NZBxNZW)F1 mice,” Journal of Immunology, vol. 184, no. 7, pp. 3937–3945, 2010.
[128]  G. Q. Daley, “Towards the generation of patient-specific pluripotent stem cells for combined gene and cell therapy of hematologic disorders,” Hematology, vol. 2007, no. 1, pp. 17–22, 2007.
[129]  S. K. Mallanna and A. Rizzino, “Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells,” Developmental Biology, vol. 344, no. 1, pp. 16–25, 2010.
[130]  F. Anokye-Danso, C. M. Trivedi, D. Juhr et al., “Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency,” Cell Stem Cell, vol. 8, no. 4, pp. 376–388, 2011.
[131]  A. Marson, S. S. Levine, M. F. Cole et al., “Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells,” Cell, vol. 134, no. 3, pp. 521–533, 2008.
[132]  M. Sachdeva, S. Zhu, F. Wu et al., “P53 represses c-Myc through induction of the tumor suppressor miR-145,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3207–3212, 2009.
[133]  S. Guo, J. Lu, R. Schlanger et al., “MicroRNA miR-125a controls hematopoietic stem cell number,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 32, pp. 14229–14234, 2010.
[134]  U. Bissels, A. Bosio, and W. Wagner, “MicroRNAs are shaping the hematopoietic landscape,” Haematologica, vol. 97, no. 2, pp. 160–167, 2012.
[135]  S. Careccia, S. Mainardi, A. Pelosi et al., “A restricted signature of miRNAs distinguishes APL blasts from normal promyelocytes,” Oncogene, vol. 28, no. 45, pp. 4034–4040, 2009.
[136]  S. Kasar, E. Salerno, Y. Yuan, et al., “Systemic in vivo lentiviral delivery of miR-15a/16 reduces malignancy in the NZB de novo mouse model of chronic lymphocytic leukemia,” Genes & Immunity, vol. 13, no. 2, pp. 109–119, 2011.
[137]  D. L. Zanette, F. Rivadavia, G. A. Molfetta et al., “miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia,” Brazilian Journal of Medical and Biological Research, vol. 40, no. 11, pp. 1435–1440, 2007.
[138]  C. P. Pallasch, M. Patz, J. P. Yoon et al., “miRNA deregulation by epigenetic silencing disrupts suppression of the oncogene PLAG1 in chronic lymphocytic leukemia,” Blood, vol. 114, no. 15, pp. 3255–3264, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413