全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Is There a Role for HTLV-1-Specific CTL in Adult T-Cell Leukemia/Lymphoma?

DOI: 10.1155/2012/391953

Full-Text   Cite this paper   Add to My Lib

Abstract:

ATLL is an aggressive malignancy of T cells that affects about 5% of individuals infected with HTLV-1. The precise mechanism of oncogenesis is not known, but there is evidence that two regulatory viral proteins, Tax and HBZ, are involved. A high set point proviral load is associated with development of ATLL or a chronic inflammatory condition, HAM/TSP. Several lines of evidence, including HLA class 1 association studies and in vitro killing assays, indicate that cytotoxic T lymphocytes are instrumental in determining this proviral load set point. Prior studies have focused chiefly on the CTL response to the immunodominant Tax protein: efficient lysis of Tax-expressing cells inversely correlates with proviral load in nonmalignant infection. However, a recent study showed that strong binding of peptides from HBZ, but not Tax, to HLA class 1 molecules was associated with a low proviral load and a reduced risk of developing HAM/TSP, indicating an important role for HBZ-specific CTL in determining infection outcome. In comparison with nonmalignant infection, HTLV-1-specific CTLs in ATLL patients are reduced in frequency and functionally deficient. Here we discuss the nature of protective CTL responses in nonmalignant HTLV-1 infection and explore the potential of CTLs to protect against ATLL. 1. Introduction Human T-cell lymphotropic virus-1 (HTLV-1) is a retrovirus which predominantly infects CD4+ T cells, where it is reverse transcribed and integrates into host DNA. The integrated provirus can then disseminate by de novo infection of T cells via the virological synapse, or by inducing clonal expansion of the host cell. Most infected individuals do not experience any symptoms, and HTLV-1-associated disease is rarely observed in individuals with a proviral load of less than 1% of their peripheral blood mononuclear cells (PBMCs) [1]. Approximately 2–6% of individuals HTLV-1 develop adult T-cell leukemia/lymphoma (ATLL), and a slightly lower percentage suffer from inflammatory disorders, including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). ATLL is a highly aggressive T-cell malignancy with a poor prognosis, and, even with standard treatment, the median survival time for clinically acute forms of the disease is measured in months [2, 3]. Chemotherapeutic intervention has had limited efficacy despite the development of drugs to specifically target ATLL cells, though some improvement has been reported combining antiviral drugs (zidovudine) and immunomodulators (such as type-1 interferon) [3–5]. Allogeneic hematopoietic stem cell

References

[1]  M. Nagai, K. Usuku, W. Matsumoto et al., “Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP,” Journal of NeuroVirology, vol. 4, no. 6, pp. 586–593, 1998.
[2]  M. Shimoyama, “Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the lymphoma study group (1984–1987),” The British Journal of Haematology, vol. 79, no. 3, pp. 428–437, 1991.
[3]  A. Bazarbachi, Y. Plumelle, J. Carlos Ramos et al., “Meta-analysis on the use of zidovudine and interferon-alfa in adult T-cell leukemia/lymphoma showing improved survival in the leukemic subtypes,” Journal of Clinical Oncology, vol. 28, no. 27, pp. 4177–4183, 2010.
[4]  P. S. Gill, W. Harrington, M. H. Kaplan et al., “Treatment of adult T-cell leukemia-lymphoma with a combination of interferon alfa and zidovudine,” The New England Journal of Medicine, vol. 332, no. 26, pp. 1744–1748, 1995.
[5]  O. Hermine, D. Bouscary, A. Gessain et al., “Brief report: treatment of adult T-cell leukemia-lymphoma with zidovudine and interferon alfa,” The New England Journal of Medicine, vol. 332, no. 26, pp. 1749–1751, 1995.
[6]  M. Kami, T. Hamaki, S. Miyakoshi et al., “Allogeneic haematopoietic stem cell transplantation for the treatment of adult T-cell leukaemia/lymphoma,” The British Journal of Haematology, vol. 120, no. 2, pp. 304–309, 2003.
[7]  Y. Tian, S. Kobayashi, N. Ohno et al., “Leukemic T cells are specifically enriched in a unique CD3dimCD7low subpopulation of CD4+ T cells in acute-type adult T-cell leukemia,” Cancer Science, vol. 102, no. 3, pp. 569–577, 2011.
[8]  M. Abe, K. Uchihashi, T. Kazuto et al., “Foxp3 expression on normal and leukemic CD4+CD25+ T cells implicated in human T-cell leukemia virus type-1 is inconsistent with Treg cells,” European Journal of Haematology, vol. 81, no. 3, pp. 209–217, 2008.
[9]  F. Toulza, K. Nosaka, M. Takiguchi et al., “FoxP3+ regulatory T cells are distinct from leukemia cells in HTLV-1-associated adult T-cell leukemia,” International Journal of Cancer, vol. 125, no. 10, pp. 2375–2382, 2009.
[10]  S. Chen, N. Ishii, S. Ine et al., “Regulatory T cell-like activity of Foxp3+ adult T cell leukemia cells,” International Immunology, vol. 18, no. 2, pp. 269–277, 2006.
[11]  N. A. Gillet, N. Malani, A. Melamed et al., “The host genomic environment of the provirus determines the abundance of HTLV-1-infected T-cell clones,” Blood, vol. 117, no. 11, pp. 3113–3122, 2011.
[12]  P. K. C. Goon, A. Biancardi, N. Fast et al., “Human T Cell Lymphotropic virus (HTLV) type-1-specific CD8+ T cells: frequency and immunodominance hierarchy,” Journal of Infectious Diseases, vol. 189, no. 12, pp. 2294–2298, 2004.
[13]  S. Jacobson, H. Shida, D. E. McFarlin, A. S. Fauci, and S. Koenig, “Circulating CD8+ cytotoxic T lymphocytes specific for HTLV-I pX in patients with HTLV-I associated neurological disease,” Nature, vol. 348, no. 6298, pp. 245–248, 1990.
[14]  M. Kannagi, S. Harada, I. Maruyama et al., “Predominant recognition of human T cell leukemia virus type I (HTLV-I) pX gene products by human CD8+ cytotoxic T cells directed against HTLV-I-infected cells,” International Immunology, vol. 3, no. 8, pp. 761–767, 1991.
[15]  C. E. Parker, S. Daenke, S. Nightingale, and C. R. M. Bangham, “Activated, HTLV-1-specific cytotoxic T-lymphocytes are found in healthy seropositives as well as in patients with tropical spastic paraparesis,” Virology, vol. 188, no. 2, pp. 628–636, 1992.
[16]  C. Pique, F. Connan, J. P. Levilain, J. Choppin, and M. C. Dokhélar, “Among all human T-cell leukemia virus type 1 proteins, tax, polymerase, and envelope proteins are predicted as preferential targets for the HLA-A2- restricted cytotoxic T-cell response,” Journal of Virology, vol. 70, no. 8, pp. 4919–4926, 1996.
[17]  T. Jinnohara, M. Tsujisaki, S. Sasaki, Y. Hinoda, and K. Imai, “Cytotoxic activity in a case of adult T-cell leukemia/lymphoma with spontaneous regression,” International Journal of Hematology, vol. 65, no. 3, pp. 293–298, 1997.
[18]  S. Suzuki, K. Uozumi, M. Maeda et al., “Adult T-cell leukemia in a liver transplant recipient that did not progress after onset of graft rejection,” International Journal of Hematology, vol. 83, no. 5, pp. 429–432, 2006.
[19]  Y. Hoshida, T. Li, Z. Dong et al., “Lymphoproliferative disorders in renal transplant patients in Japan,” International Journal of Cancer, vol. 91, no. 6, pp. 869–875, 2001.
[20]  Y. Shimizu, A. Takamori, A. Utsunomiya et al., “Impaired tax-specific t-cell responses with insufficient control of HTLV-1 in a subgroup of individuals at asymptomatic and smoldering stages,” Cancer Science, vol. 100, no. 3, pp. 481–489, 2009.
[21]  T. Kozako, N. Arima, S. Toji et al., “Reduced frequency, diversity, and function of human T cell leukemia virus type 1-specific CD8+ T cell in adult T cell leukemia patients,” Journal of Immunology, vol. 177, no. 8, pp. 5718–5726, 2006.
[22]  T. Kozako, M. Yoshimitsu, H. Fujiwara et al., “PD-1/PD-L1 expression in human T-cell leukemia virus type 1 carriers and adult T-cell leukemia/lymphoma patients,” Leukemia, vol. 23, no. 2, pp. 375–382, 2009.
[23]  B. Arnulf, M. Thorel, Y. Poirot et al., “Loss of the ex vivo but not the reinducible CD8+ T-cell response to Tax in human T-cell leukemia virus type 1-infected patients with adult T-cell leukemia/lymphoma,” Leukemia, vol. 18, no. 1, pp. 126–132, 2004.
[24]  M. Kannagi, K. Sugamura, and K. I. Kinoshita, “Specific cytolysis of fresh tumor cells by an autologous killer T cell line derived from an adult T cell leukemia/lymphoma patient,” Journal of Immunology, vol. 133, no. 2, pp. 1037–1041, 1984.
[25]  Y. Furukawa, R. Kubota, M. Tara, S. Izumo, and M. Osame, “Existence of escape mutant in HTLV-I tax during the development of adult T-cell leukemia,” Blood, vol. 97, no. 4, pp. 987–993, 2001.
[26]  Y. Furukawa, M. Tara, S. Izumo, K. Arimura, and M. Osame, “HTLV-I viral escape and host genetic changes in the development of adult T cell leukemia,” International Journal of Cancer, vol. 118, no. 2, pp. 381–387, 2006.
[27]  S. Tamiya, M. Matsuoka, K. I. Etoh et al., “Two types of defective human T-lymphotropic virus type I provirus in adult T-cell leukemia,” Blood, vol. 88, no. 8, pp. 3065–3073, 1996.
[28]  M. Miyazaki, J. I. Yasunaga, Y. Taniguchi, S. Tamiya, T. Nakahata, and M. Matsuoka, “Preferential selection of human T-cell leukemia virus type 1 provirus lacking the 5' long terminal repeat during oncogenesis,” Journal of Virology, vol. 81, no. 11, pp. 5714–5723, 2007.
[29]  A. Okayama, S. Stuver, M. Matsuoka et al., “Role of HTLV-1 proviral DNA load and clonality in the development of adult T-cell leukemia/lymphoma in asymptomatic carriers,” International Journal of Cancer, vol. 110, no. 4, pp. 621–625, 2004.
[30]  R. Kubota, T. Kawanishi, H. Matsubara, A. Manns, and S. Jacobson, “HTLV-I specific IFN-γ+ CD8+ lymphocytes correlate with the proviral load in peripheral blood of infected individuals,” Journal of Neuroimmunology, vol. 102, no. 2, pp. 208–215, 2000.
[31]  R. Kubota, M. Nagai, T. Kawanishi, M. Osame, and S. Jacobson, “Increased HTLV type 1 tax-specific CD8+ cells in HTLV type 1-associated myelopathy/tropical spastic paraparesis: correlation with HTLV type 1 proviral load,” AIDS Research and Human Retroviruses, vol. 16, no. 16, pp. 1705–1709, 2000.
[32]  D. Wodarz, S. E. Hall, K. Usuku et al., “Cytotoxic T-cell abundance and virus load in human immunodeficiency virus type 1 and human T-cell leukaemia virus type 1,” Proceedings of the Royal Society B, vol. 268, no. 1473, pp. 1215–1221, 2001.
[33]  C. R. Bangham, K. Meekings, F. Toulza et al., “The immune control of HTLV-1 infection: selection forces and dynamics,” Frontiers in Bioscience, vol. 14, pp. 2889–2903, 2009.
[34]  B. Asquith, A. J. Mosley, A. Barfield et al., “A functional CD8+ cell assay reveals individual variation in CD8+ cell antiviral efficacy and explains differences in human T-lymphotropic virus type 1 proviral load,” Journal of General Virology, vol. 86, part 5, pp. 1515–1523, 2005.
[35]  T. Kattan, A. MacNamara, A. G. Rowan et al., “The avidity and lytic efficiency of the CTL response to HTLV-11,” Journal of Immunology, vol. 182, no. 9, pp. 5723–5729, 2009.
[36]  B. Asquith, Y. Zhang, A. J. Mosley et al., “In vivo T lymphocyte dynamics in humans and the impact of human T-lymphotropic virus 1 infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 19, pp. 8035–8040, 2007.
[37]  K. J. M. Jeffery, K. Usuku, S. E. Hall et al., “HLA alleles determine human T-lymphotropic virus-I (HTLV-I) proviral load and the risk of HTLV-I-associated myelopathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3848–3853, 1999.
[38]  K. Bieganowska, P. H?llsberg, G. J. Buckle et al., “Direct analysis of viral-specific CD8+ T cells with soluble HLA- A2/Tax11-19 tetramer complexes in patients with human T cell lymphotropic virus-associated myelopathy,” Journal of Immunology, vol. 162, no. 3, pp. 1765–1771, 1999.
[39]  S. Yashiki, T. Fujiyoshi, N. Arima et al., “HLA-A*26, HLA-B*4002, HLA-B*4006, and HLA-B*4801 alleles predispose to adult T cell leukemia: the limited recognition of HTLV type 1 tax peptide anchor motifs and epitopes to generate anti-HTLV type 1 tax CD8+ cytotoxic T lymphocytes,” AIDS Research and Human Retroviruses, vol. 17, no. 11, pp. 1047–1061, 2001.
[40]  G. Gaudray, F. Gachon, J. Basbous, M. Biard-Piechaczyk, C. Devaux, and J. M. Mesnard, “The complementary strand of the human T-cell leukemia virus type 1 RNA genome encodes a bZIP transcription factor that down-regulates viral transcription,” Journal of Virology, vol. 76, no. 24, pp. 12813–12822, 2002.
[41]  A. MacNamara, U. Kadolsky, C. R. M. Bangham, and B. Asquith, “T-cell epitope prediction: rescaling can mask biological variation between MHC molecules,” PLoS Computational Biology, vol. 5, no. 3, Article ID e1000327, 2009.
[42]  A. MacNamara, A. Rowan, S. Hilburn et al., “HLA class I binding of HBZ determines outcome in HTLV-1 infection,” PLoS Pathogens, vol. 6, no. 9, Article ID e01117, 2010.
[43]  S. Hilburn, A. Rowan, M.-A. Demontis et al., “In vivo expression of human T-lymphotropic virus type 1 basic leucine-zipper protein generates specific CD8+ and CD4+ T-lymphocyte responses that correlate with clinical outcome,” Journal of Infectious Diseases, vol. 203, no. 4, pp. 529–536, 2011.
[44]  K. Kurihara, N. Harashima, S. Hanabuchi et al., “Potential immunogenicity of adult T cell leukemia cells in vivo,” International Journal of Cancer, vol. 114, no. 2, pp. 257–267, 2005.
[45]  T. Kinoshita, M. Shimoyama, K. Tobinai et al., “Detection of mRNA for the tax1/rex1 gene of human T-cell leukemia virus type I in fresh peripheral blood mononuclear cells of adult T-cell leukemia patients and viral carriers by using the polymerase chain reaction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 14, pp. 5620–5624, 1989.
[46]  S. Takeda, M. Maeda, S. Morikawa et al., “Genetic and epigenetic inactivation of TAX gene in adult t-cell leukemia cells,” International Journal of Cancer, vol. 109, no. 4, pp. 559–567, 2004.
[47]  T. Ohashi, S. Hanabuchi, H. Kato et al., “Prevention of adult T-cell leukemia-like lymphoproliferative disease in rats by adoptively transferred T cells from a donor immunized with human T-cell leukemia virus type 1 Tax-coding DNA vaccine,” Journal of Virology, vol. 74, no. 20, pp. 9610–9616, 2000.
[48]  S. Hanabuchi, T. Ohashi, Y. Koya et al., “Regression of human T-cell leukemia virus type I (HTLV-I)-associated lymphomas in a rat model: peptide-induced T-cell immunity,” Journal of the National Cancer Institute, vol. 93, no. 23, pp. 1775–1783, 2001.
[49]  N. Harashima, K. Kurihara, A. Utsunomiya et al., “Graft-versus-Tax Response in adult T-cell leukemia patients after hematopoietic stem cell transplantation,” Cancer Research, vol. 64, no. 1, pp. 391–399, 2004.
[50]  N. Harashima, R. Tanosaki, Y. Shimizu et al., “Identification of two new HLA-A*1101-restricted tax epitopes recognized by cytotoxic T lymphocytes in an adult T-cell leukemia patient after hematopoietic stem cell transplantation,” Journal of Virology, vol. 79, no. 15, pp. 10088–10092, 2005.
[51]  M. Saito, T. Matsuzaki, Y. Satou et al., “In vivo expression of the HBZ gene of HTLV-1 correlates with proviral load, inflammatory markers and disease severity in HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP),” Retrovirology, vol. 6, article 19, 2009.
[52]  Y. Satou, J. I. Yasunaga, M. Yoshida, and M. Matsuoka, “HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 3, pp. 720–725, 2006.
[53]  K. Suemori, H. Fujiwara, T. Ochi et al., “HBZ is an immunogenic protein, but not a target antigen for human T-cell leukemia virus type 1-specific cytotoxic T lymphocytes,” Journal of General Virology, vol. 90, part 8, pp. 1806–1811, 2009.
[54]  F. Rende, I. Cavallari, A. Corradin et al., “Kinetics and intracellular compartmentalization of HTLV-1 gene expression: nuclear retention of HBZ mRNAs,” Blood, vol. 117, no. 18, pp. 4855–4859, 2011.
[55]  M. Matsuoka and K. T. Jeang, “Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax, HBZ and therapy,” Oncogene, vol. 30, no. 12, pp. 1379–1389, 2010.
[56]  Y. Satou, J.-I. Yasunaga, T. Zhao et al., “HTLV-1 bZIP factor induces T-cell lymphoma and systemic inflammation in vivo,” PLoS Pathogens, vol. 7, no. 2, Article ID e1001274, 2011.
[57]  R. Sundaram, M. P. Lynch, S. Rawale et al., “Protective efficacy of multiepitope human leukocyte antigen-A*0201 restricted cytotoxic T-lymphocyte peptide construct against challenge with human T-cell lymphotropic virus type 1 Tax recombinant vaccinia virus,” Journal of Acquired Immune Deficiency Syndromes, vol. 37, no. 3, pp. 1329–1339, 2004.
[58]  R. Sundaram, Y. Sun, C. M. Walker, F. A. Lemonnier, S. Jacobson, and P. T. P. Kaumaya, “A novel multivalent human CTL peptide construct elicits robust cellular immune responses in HLA-A*0201 transgenic mice: implications for HTLV-1 vaccine design,” Vaccine, vol. 21, no. 21-22, pp. 2767–2781, 2003.
[59]  Y. Taniguchi, K. Nosaka, J. I. Yasunaga et al., “Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms,” Retrovirology, vol. 2, article 64, 2005.
[60]  T. Koiwa, A. Hamano-Usami, T. Ishida et al., “5'-long terminal repeat-selective CpG methylation of latent human T-cell leukemia virus type 1 provirus in vitro and in vivo,” Journal of Virology, vol. 76, no. 18, pp. 9389–9397, 2002.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413