全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Buildings  2013 

Experimental Study on the Hygrothermal Behavior of a Coated Sprayed Hemp Concrete Wall

DOI: 10.3390/buildings3010079

Keywords: bio-based material, lime plaster, multilayer wall, large-scale experiment, temperature and relative humidity measurement, coupled heat and moisture transfer, evaporation, moisture accumulation, 1D thermal simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hemp concrete is a sustainable lightweight concrete that became popular in the field of building construction because of its thermal and environmental properties. However; available experimental data on its hygrothermal behavior are rather scarce in the literature. This paper describes the design of a large-scale experiment developed to investigate the hygrothermal behavior of hemp concrete cast around a timber frame through a spraying process; and then coated with lime-based plaster. The equipment is composed of two climatic chambers surrounding the tested wall. The experiment consists of maintaining the indoor climate at constant values and applying incremental steps of temperature; relative humidity or vapor pressure in the outdoor chamber. Temperature and relative humidity of the room air and on various depths inside the wall are continuously registered during the experiments and evaporation phenomena are observed. The influence of the plaster on the hygrothermal behavior of hemp concrete is investigated. Moreover; a comparison of experimental temperatures with numerical results obtained from a purely conductive thermal model is proposed. Comparing the model with the measured data gave satisfactory agreement.

References

[1]  Osanyintola, O.F.; Simonson, C.J. Moisture buffering capacity of hygroscopic building materials: Experimental facilities and energy impact. Energy Build. 2006, 38, 1270–1282, doi:10.1016/j.enbuild.2006.03.026.
[2]  Steeman, M.; Janssens, A.; De Paepe, M. Performance evaluation of indirect evaporative cooling using whole-building hygrothermal simulations. Appl. Therm. Eng. 2009, 29, 2870–2875, doi:10.1016/j.applthermaleng.2009.02.004.
[3]  Woloszyn, M.; Kalamees, T.; Abadie, M.O.; Steeman, M.; Kalagsidis, S.A. The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings. Build. Environ. 2009, 44, 515–524, doi:10.1016/j.buildenv.2008.04.017.
[4]  Simonson, C.J.; Salonvaara, M.; Ojanen, T. The effects of structures on indoor humidity—Possibility to improve comfort and perceived air quality. Indoor Air 2002, 12, 243–251, doi:10.1034/j.1600-0668.2002.01128.x.
[5]  El Diasty, R.; Fazio, P.; Budaiwi, I. Modelling of indoor air humidity: The dynamic behavior within an enclosure. Energy Build. 1992, 19, 61–73, doi:10.1016/0378-7788(92)90036-G.
[6]  Woloszyn, M.; Rode, C. Tools for performance simulation of heat, air and moisture conditions of whole buildings. Build. Simul. 2008, 1, 5–24, doi:10.1007/s12273-008-8106-z.
[7]  Hagentoft, C.E.; Kalagasidis, S.A.; Adl-Zarrabi, B.; Roels, S.; Carmeliet, J.; Hens, H.; Grunewald, J.; Funk, M.; Becker, R.; Shamir, D.; Adan, O.; Brocken, H.; Kumaran, K.; Djebbar, R. Assessment method of numerical prediction models for combined heat, air and moisture transfer in building components: Benchmarks for one-dimensional cases. J. Therm. Env. Build. Sci. 2004, 27, 327–352.
[8]  Hagentoft, C.E. Heat, air and moisture transfer through new and retrofitted insulated envelope parts. Task 5: Performances and practice. In Final Report of IEA Annex 24; Katholieke Universiteit Leuven: Leuven, Belgium, 1998.
[9]  Van Belleghem, M.; Steeman, M.; Willockx, A.; Janssens, A.; De Paepe, M. Benchmark experiments for moisture transfer modelling in air and porous materials. Build. Environ. 2011, 46, 884–898, doi:10.1016/j.buildenv.2010.10.018.
[10]  Carmeliet, J.; Derome, D. Temperature driven inward vapor diffusion under constant and cyclic loading in small-scale wall assemblies: Part 1 experimental investigation. Build. Environ. 2012, 48, 48–56, doi:10.1016/j.buildenv.2011.08.015.
[11]  Rode, C.; Salonvaara, M.; Ojanen, T.; Simonson, C.; Grau, K. Integrated hygrothermal analysis of ecological buildings. In Proceedings of the 2nd International Building Physics Conference, Leuven, Belgium, 14 September 2003.
[12]  Pavlík, Z.; Cerny, R. Hygrothermal performance study of an innovative interior thermal insulation system. Appl. Therm. Eng. 2009, 29, 1941–1946, doi:10.1016/j.applthermaleng.2008.09.013.
[13]  Kalamees, T.; Vinha, J. Hygrothermal calculations and laboratory tests on timber-framed wall structures. Build. Environ. 2003, 38, 689–697, doi:10.1016/S0360-1323(02)00207-X.
[14]  Belarbi, R.; Qin, M.; A?t-Mokhtar, A.; Nilsson, L.O. Experimental and theoretical investigation of non-isothermal transfer in hygroscopic building materials. Build. Environ. 2008, 43, 2154–2162, doi:10.1016/j.buildenv.2007.12.014.
[15]  Yang, X.; Vera, S.; Rao, J.; Ge, H.; Fazio, P. Full-scale experimental investigation of moisture buffering effect and indoor moisture distribution. In Proceedings of the Building X Conference, Clearwater Beach, FL, USA, 2–7 December 2007.
[16]  Woolley, T.; Thompson, H.; McGrogan, T.; Alexander, M. The role of low impact building materials in sustainable construction: The potential for hemp. In Proceedings of the Sustainable Building Conference, Stellenbosch, South Africa, 13–18 September 2004.
[17]  Bevan, R.; Woolley, T. Hemp Lime Construction: A Guide to Building with Hemp Lime Composites; IHS/BRE Press: Bracknell, Berkshire, UK, 2008.
[18]  Evrard, A.; De Herde, A. Hygrothermal performance of lime-hemp wall assemblies. J. Build. Phys. 2010, 34, 5–25, doi:10.1177/1744259109355730.
[19]  Garnier, C.; Pretot, S.; Collet, F. Life cycle assessment of a hemp concrete wall manufactured by spraying. In Proceedings of The Second International Conference on Building Energy and Environment, Boulder, CO, USA, 1–4 August 2012.
[20]  Colinart, T.; Glouannec, P.; Chauvelon, P. Influence of the setting process and the formulation on the drying of hemp concrete. Constr. Build. Mater. 2012, 30, 372–380, doi:10.1016/j.conbuildmat.2011.12.030.
[21]  Cerezo, V. Proprietes Mecaniques, Thermiques et Acoustiques d’un Materiau à Base de Particules Vegetales: Approche Experimentale et Modelisation Theorique (in French). Ph.D. Dissertation, ENTPE (Ecole Nationale des Travaux publics de l’Etat), Lyon, France, 16 June 2005.
[22]  Evrard, A. Transient Hygrothermal Behavior of Lime-Hemp Materials. Ph.D. Dissertation, Universite Catholique de Louvain, Louvain, Belgium, 5 March 2008.
[23]  Collet, F. Caracterisation Hydrique et Thermique de Materiaux de Genie Civil à Faibles Impacts Environnementaux (in French). Ph.D. Dissertation, INSA (The Institut National des Sciences Appliquées), Rennes, France, 14 December 2004.
[24]  Samri, D. Analyse Physique et Caracterisation Hygrothermique des Materiaux de Construction: Approche Experimentale et Modelisation Numerique (in French). Ph.D. Dissertation, ENTPE, Lyon, France, 21 October 2008.
[25]  Pierre, T.; Colinart, T.; Glouannec, P. Measurements of thermal properties of biosourced building materials. In Proceedings of the 18th Symposium on Thermophysical Properties, Boulder, CO, USA, 24–29 June 2012.
[26]  Collet, F.; Pretot, S. Experimental investigation of moisture buffering capacity of sprayed hemp concrete. Constr. Build. Mater. 2012, 36, 58–65, doi:10.1016/j.conbuildmat.2012.04.139.
[27]  Shea, A.; Lawrence, M.; Walker, P. Hygrothermal performance of an experimental hemp-lime building. Constr. Build. Mater. 2012, 36, 270–275, doi:10.1016/j.conbuildmat.2012.04.123.
[28]  Tran Le, A.D.; Maalouf, C.; Mai, T.H.; Wurtz, E.; Collet, F. Transient hygrothermal behavior of a hemp concrete building envelope. Energy Build. 2010, 30, 1797–1806.
[29]  Maalouf, C.; Tran Le, A.D.; Lachi, M.; Wurtz, E.; Mai, T.H. Effect of moisture transfer on thermal inertia in simple layer walls: Case of a vegetal fibre material. Math. Mod. Meth. Appl. Sci. 2011, 5, 33–47.
[30]  Maalouf, C.; Tran Le, A.D.; Lachi, M.; Wurtz, E.; Mai, T.H. Effect of moisture transfer on heat energy storage in simple layer walls: Case of a vegetal fibre material. Math. Mod. Meth. Appl. Sci. 2011, 5, 1127–1134.
[31]  LIMATB Website. Available online: http://web.univ-ubs.fr/limatb (accessed on 17 January 2013).
[32]  Elfordy, S.; Lucas, F.; Tancret, F.; Scudeller, Y.; Goudet, L. Mechanical and thermal properties of lime and hemp concrete (“hempcrete”) manufactured by a projection process. Constr. Build. Mater. 2008, 22, 2116–2123, doi:10.1016/j.conbuildmat.2007.07.016.
[33]  Glouannec, P.; Chauvelon, P.; Colinart, T.; Le Bideau, P.; Zaknoune, A.; Jameline, N. Experimental and numerical studies of the drying of hemp concrete. In Proceedings of the 17th International Drying Symposium, Magdeburg, Germany, 3–6 October 2010.
[34]  Hedenblad, G. Measurement of moisture in high performance concrete. In Proceedings of Nordic Concrete Federation Mini-Seminar “Moisture Measurement in Concrete Constructions Exposed to Temperature and Moisture Variations”, Otaniemi, Espoo, Finland; 1997.
[35]  Peuhkuri, R.; Rode, C.; Hansen, K.K. Non-isothermal moisture transport through insulation materials. Build. Environ. 2008, 43, 811–822, doi:10.1016/j.buildenv.2007.01.021.
[36]  Hens, H. Building Physics—Heat, Air and Moisture: Fundamentals and Engineering Methods with Examples and Exercises; Ernst & Sohn: Berlin, Germany, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413