全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Myeloid Sarcoma: Clinicopathologic, Cytogenetic, and Outcome Analysis of 21 Adult Patients

DOI: 10.4061/2011/523168

Full-Text   Cite this paper   Add to My Lib

Abstract:

Myeloid sarcoma (MS) is a neoplasm of immature granulocytes, monocytes, or both involving any extramedullary site. Twenty one patients with MS at diagnosis who were treated at King Hussein Cancer Center in Jordan were included in this retrospective study with a male to female ratio of 2?:?1. The most common site was the reticuloendothelial system. The most common morphology subtype was M2 (38%) and the most frequent chromosomal abnormality was trisomy 8. Twenty patients received induction chemotherapy; only 14 (70%) achieved complete remission. Median survival time was 24.7 months for the whole group and 58.6 months for patients who underwent allogenic bone marrow transplant. This paper showed that MS has frequent M2 morphology, carries chromosomal aberrations other than t(8;21), and requires aggressive therapy as a front line approach. 1. Introduction Myeloid sarcoma (MS) is a tumorous aggregate of malignant immature granulocytes, monocytes, or both involving any extramedullary site. Although first described by Burns [1] in 1811, it was King [2] in 1853 who coined the term chloroma based on the green color of the tumorous mass attributable to the enzyme myeloperoxidase. MS may occur de novo in the absence of any past history or current bone marrow involvement by acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), or myeloproliferative disorder (MPD) [3]. This primary form of MS is relatively rare. On the other hand, secondary MS (defined as the occurrence of MS manifestation in patients with previous or current bone marrow involvement by AML, MDS, or MPD) occurs in approximately 1.4% to 9% of patients with AML [4, 5]. MS is frequently mistaken for non-Hodgkin's lymphoma, small round cell tumors (neuroblastoma, rhabdomyosarcoma, Ewing sarcoma, and medulloblastoma), and undifferentiated carcinoma, which may cause misdiagnosis in about 50% of cases when immunohistochemistry is not used [6]. The present study was designated to evaluate the lineage differentiation of neoplastic cells in MS by immunohistochemistry and to correlate the results with the clinicopathological features, cytogenetics, and treatment outcomes. 2. Patients and Methods Twenty one adult (18 years of age or more) patients with a histologic diagnosis of MS at presentation, who were managed at KHCC in Jordan between 2004 and 2008, were included in the present study. The study was approved by the institutional review board at KHCC. The charts of these patients were reviewed retrospectively for data collection including age, sex, anatomic site of involvement,

References

[1]  A. Burns, “Observation of surgical anatomy,” in Head and Neck, p. 364, Royce, London, UK, 1811.
[2]  A. King, “A case of chloroma,” The Monthly Journal of Medicine, vol. 17, p. 97, 1853.
[3]  R. D. Brunnung, E. Matutes, and G. Flandrin, “Acute myeloid leukemias,” in Pathology and Genetics of Tumors of Haematopoietic and Lymphoid Tissue, E. S. Jaffe, N. L. Harris, H. Stein, and J. W. Vardiman, Eds., World Health Organization Classification of Tumors, pp. 77–105, IARC Press, 2001.
[4]  A. M. Tsimberidou, H. M. Kantarjian, E. Estey et al., “Outcome in patients with nonleukemic granulocytic sarcoma treated with chemotherapy with or without radiotherapy,” Leukemia, vol. 17, no. 6, pp. 1100–1103, 2003.
[5]  N. Zekry, M. J. Klooster, R. Raghavan, and J. Wang, “A 7-year-old child with a history of acute myeloid leukemia presenting with multiple gastrointestinal polyps. Extramedullary myeloid sarcoma,” Archives of Pathology & Laboratory Medicine, vol. 130, no. 1, pp. e3–e4, 2006.
[6]  J. Audouin, E. Comperat, A. Le Tourneau et al., “Myeloid sarcoma: clinical and morphologic criteria useful for diagnosis,” International Journal of Surgical Pathology, vol. 11, no. 4, pp. 271–282, 2003.
[7]  J. W. Vardiman, J. Thiele, D. A. Arber et al., “The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes,” Blood, vol. 114, no. 5, pp. 937–951, 2009.
[8]  J. C. Byrd, W. J. Edenfield, D. J. Shields, and N. A. Dawson, “Extramedullary myeloid cell tumors in acute nonlymphocytic leukemia: a clinical review,” Journal of Clinical Oncology, vol. 13, no. 7, pp. 1800–1816, 1995.
[9]  B. A. Alexiev, W. Wang, Y. Ning et al., “Myeloid sarcomas: a histologic, immunohistochemical, and cytogenetic study,” Diagnostic Pathology, vol. 2, no. 1, article 42, 2007.
[10]  M. S. Tallman, D. Hakimian, J. M. Shaw, G. S. Lissner, E. J. Russell, and D. Variakojis, “Granulocytic sarcoma is associated with the 8;21 translocation in acute myeloid leukemia,” Journal of Clinical Oncology, vol. 11, no. 4, pp. 690–697, 1993.
[11]  G. Deeb, M. R. Baer, D. P. Gaile et al., “Genomic profiling of myeloid sarcoma by array comparative genomic hybridization,” Genes Chromosomes and Cancer, vol. 44, no. 4, pp. 373–383, 2005.
[12]  S. A. Pileri, S. Ascani, M. C. Cox et al., “Myeloid sarcoma: clinico-pathologic, phenotypic and cytogenetic analysis of 92 adult patients,” Leukemia, vol. 21, no. 2, pp. 340–350, 2007.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133