全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Lymphoma  2012 

AIDS-Related Non-Hodgkin's Lymphoma in Sub-Saharan Africa: Current Status and Realities of Therapeutic Approach

DOI: 10.1155/2012/904367

Full-Text   Cite this paper   Add to My Lib

Abstract:

Today AIDS-related non-Hodgkin's lymphoma (AR-NHL) is a significant cause of morbidity and mortality in HIV-infected patients the world over, and especially in sub-Saharan Africa. While the overall incidence of AR-NHL since the emergence of combination antiretroviral therapy (cART) era has declined, the occurrence of this disease appears to have stabilized. In regions where access to cART is challenging, the impact on disease incidence is less clear. In the resource-rich environment it is clinically recognized that it is no longer appropriate to consider AR-NHL as a single disease entity and rather treatment of AIDS lymphoma needs to be tailored to lymphoma subtype. While intensive therapeutic strategies in the resource-rich world are clearly improving outcome, in AIDS epicenters of the world and especially in sub-Saharan Africa there is a paucity of data on treatment and outcomes. In fact, only one prospective study of dose-modified oral chemotherapy and limited retrospective studies with sufficient details provide a window into the natural history and clinical management of this disease. The scarcities and challenges of treatment in this setting provide a backdrop to review the current status and realities of the therapeutic approach to AR-NHL in sub-Saharan Africa. More pragmatic and risk-adapted therapeutic approaches are needed. 1. Introduction While the advent of combination antiretroviral therapy (cART) has had a dramatic effect on the clinical manifestations and progression of HIV disease, reduced the incidence of opportunistic infection(s) and AIDS-related malignancies, and improved overall survival in the resource-rich world, the impact of cART scale-up afforded through World Health Organization (WHO) global initiatives and the President’s Emergency Plan for AIDS Relief (PEPFAR) in improving access and patient monitoring is less apparent in resource challenged AIDS epicenters of the world and especially Africa [1–6]. The fact remains that the overwhelming majority of HIV-infected individuals in these resource challenged regions are either unaware of their underlying infection and/or go untreated. Thus, the burden of HIV infection and AIDS is greatest in the developing world (95%) with sub-Saharan Africa harboring essentially two-thirds of the world’s population of persons living with HIV/AIDS [7]. Cancer is now a leading cause of morbidity and mortality among individuals living with HIV and AIDS [2, 3, 8–12]. The risk of developing United States (US) Centers for Disease Control AIDS-defining malignancy in HIV-infected subjects is associated

References

[1]  S. Grabar, V. Le Moing, C. Goujard et al., “Clinical outcome of patients with HIV-1 infection according to immunologic and virologic response after 6 months of highly active antiretroviral therapy,” Annals of Internal Medicine, vol. 133, no. 6, pp. 401–I16, 2000.
[2]  E. A. Engels, R. J. Biggar, H. I. Hall et al., “Cancer risk in people infected with human immunodeficiency virus in the United States,” International Journal of Cancer, vol. 123, no. 1, pp. 187–194, 2008.
[3]  A. E. Grulich, M. T. van Leeuwen, M. O. Falster, and C. M. Vajdic, “Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis,” Lancet, vol. 370, no. 9581, pp. 59–67, 2007.
[4]  C. Diamond, T. H. Taylor, T. Im, M. Miradi, and H. Anton-Culver, “Improved survival and chemotherapy response among patients with AIDS-related non-Hodgkin's lymphoma receiving highly active antiretroviral therapy,” Hematological Oncology, vol. 24, no. 3, pp. 139–145, 2006.
[5]  C. Diamond, T. H. Taylor, and H. Anton-Culver, “Quality of life, characteristics and survival of patients with HIV and lymphoma,” Quality of Life Research, vol. 19, no. 2, pp. 149–155, 2010.
[6]  M. Bower, C. Palmieri, and T. Dhillon, “AIDS-related malignancies: changing epidemiology and the impact of highly active antiretroviral therapy,” Current Opinion in Infectious Diseases, vol. 19, no. 1, pp. 14–19, 2006.
[7]  UNAIDS, “Report on the Global AIDS Epidemic,” 2010, http://www.unaids.org/globalreport/.
[8]  M. S. Shiels, R. M. Pfeiffer, M. H. Gail et al., “Cancer burden in the HIV-infected population in the United States,” Journal of the National Cancer Institute, vol. 103, no. 9, pp. 753–762, 2011.
[9]  C. J. Achenbach, S. R. Cole, M. M. Kitahata et al., “Mortality after cancer diagnosis in HIV-infected individuals treated with antiretroviral therapy,” AIDS, vol. 25, no. 5, pp. 691–700, 2011.
[10]  N. F. Crum, R. H. Riffenburgh, S. Wegner et al., “Comparisons of causes of death and mortality rates among HIV-infected persons: analysis of the pre-, early, and late HAART (Highly Active Antiretroviral Therapy) eras,” Journal of Acquired Immune Deficiency Syndromes, vol. 41, no. 2, pp. 194–200, 2006.
[11]  F. J. Palella, R. K. Baker, A. C. Moorman et al., “Mortality in the highly active antiretroviral therapy era: changing causes of death and disease in the HIV outpatient study,” Journal of Acquired Immune Deficiency Syndromes, vol. 43, no. 1, pp. 27–34, 2006.
[12]  B. Hasse, B. Ledergerber, H. Furrer et al., “Morbidity and aging in HIV-infected persons: the Swiss HIV cohort study,” Clinical Infectious Diseases, vol. 53, no. 11, pp. 1130–1139, 2011.
[13]  M. S. Shiels, R. M. Pfeiffer, H. I. Hall et al., “Proportions of kaposi sarcoma, selected non-hodgkin lymphomas, and cervical cancer in the United States occurring in persons with AIDS, 1980–2007,” Journal of the American Medical Association, vol. 305, no. 14, pp. 1450–1459, 2011.
[14]  M. Frisch, R. J. Biggar, E. A. Engels, and J. J. Goedert, “Association of cancer with AIDS-related immunosuppression in adults,” Journal of the American Medical Association, vol. 285, no. 13, pp. 1736–1745, 2001.
[15]  S. M. Mbulaiteye, W. F. Anderson, K. Bhatia, P. S. Rosenberg, M. S. Linet, and S. S. Devesa, “Trimodal age-specific incidence patterns for Burkitt lymphoma in the United States, 1973–2005,” International Journal of Cancer, vol. 126, no. 7, pp. 1732–1739, 2010.
[16]  F. Sitas, R. Pacella-Norman, H. Carrara et al., “The spectrum of HIV-1 related cancers in South Africa,” International Journal of Cancer, vol. 88, no. 3, pp. 489–492, 2000.
[17]  G. Sissolak, E. A. Abayomi, and P. Jacobs, “AIDS defining lymphomas in the era of highly active antiretroviral therapy (HAART)—an African perspective,” Transfusion and Apheresis Science, vol. 37, no. 1, pp. 63–70, 2007.
[18]  A. J. Sasco, A. Jaquet, E. Boidin et al., “The challenge of AIDS-related malignancies in sub-Saharan Africa,” PLoS ONE, vol. 5, no. 1, Article ID e8621, 2010.
[19]  G. Sissolak, J. Juritz, D. Sissolak, L. Wood, and P. Jacobs, “Lymphoma—emerging realities in sub-Saharan Africa,” Transfusion and Apheresis Science, vol. 42, no. 2, pp. 141–150, 2010.
[20]  B. N'Galy, S. Bertozzi, and R. W. Ryder, “Obstacles to the optimal management of HIV infection/AIDS in Africa,” Journal of Acquired Immune Deficiency Syndromes, vol. 3, no. 4, pp. 430–437, 1990.
[21]  W. O. Mwanda, C. Banura, E. Katongole-Mbidde et al., “Therapeutic challenges of AIDS-related non-Hodgkin's lymphoma in the United States and East Africa,” Journal of the National Cancer Institute, vol. 94, no. 10, pp. 718–732, 2002.
[22]  J. Orem, M. W. Otieno, and S. C. Remick, “AIDS-associated cancer in developing nations,” Current Opinion in Oncology, vol. 16, no. 5, pp. 468–476, 2004.
[23]  J. Orem, M. W. Otieno, and S. C. Remick, “Challenges and opportunities for treatment and research of AIDS-related malignancies in Africa,” Current Opinion in Oncology, vol. 18, no. 5, pp. 479–486, 2006.
[24]  J. Orem, W. O. Mwanda, C. Banura et al., “Capacity building for the clinical investigation of AIDS malignancy in East Africa,” Cancer Detection and Prevention, vol. 29, no. 2, pp. 133–145, 2005.
[25]  S. E. Krown, “Cancer in resource-limited settings,” Journal of Acquired Immune Deficiency Syndromes, vol. 56, no. 4, pp. 297–299, 2011.
[26]  W. Wakabi, “Kenya and Uganda grapple with Burkitt lymphoma,” The Lancet Oncology, vol. 9, no. 4, p. 319, 2008.
[27]  R. Yarchoan, T. S. Uldrick, and R. F. Little, “AIDS-associated lymphomas,” in Cancer: Principles and Practice of Oncology, pp. 2099–2112, Lippincott, Williams & Wilkins, Philadelphia, 9th edition, 2011.
[28]  J. L. Ziegler, J. A. Beckstead, and P. A. Volberding, “Non-Hodgkin's lymphoma in 90 homosexual men. Relation to generalized lymphadenopathy and the acquired immunodeficiency syndrome,” New England Journal of Medicine, vol. 311, no. 9, pp. 565–570, 1984.
[29]  W. O. Mwanda, J. Orem, P. Fu et al., “Dose-modified oral chemotherapy in the treatment of AIDS-related non-Hodgkin's lymphoma in East Africa,” Journal of Clinical Oncology, vol. 27, no. 21, pp. 3480–3488, 2009.
[30]  J. T. Boerma, A. J. Nunn, and J. A. G. Whitworth, “Mortality impact of the AIDS epidemic: evidence from community studies in less developed countries,” AIDS, vol. 12, no. 1, pp. S3–S14, 1998.
[31]  S. M. Mbulaiteye, D. M. Parkin, and C. S. Rabkin, “Epidemiology of AIDS-related malignancies an international perspective,” Hematology/Oncology Clinics of North America, vol. 17, no. 3, pp. 673–696, 2003.
[32]  A. Cingolani, R. Gastaldi, L. Fassone et al., “Epstein-Barr virus infection is predictive of CNS involvement in systemic AIDS-related non-Hodgkin's lymphomas,” Journal of Clinical Oncology, vol. 18, no. 19, pp. 3325–3330, 2000.
[33]  D. M. Parkin, H. Garcia-Giannoli, M. Raphael et al., “Non-Hodgkin lymphoma in Uganda: a case-control study,” AIDS, vol. 14, no. 18, pp. 2929–2936, 2000.
[34]  J. Orem, A. Maganda, E. K. Mbidde, and E. Weiderpass, “Clinical characteristics and outcome of children with burkitt lymphoma in uganda according to HIV infection,” Pediatric Blood and Cancer, vol. 52, no. 4, pp. 455–458, 2009.
[35]  M. H. Bateganya, J. Stanaway, P. E. Brentlinger et al., “Predictors of survival after a diagnosis of non-Hodgkin lymphoma in a resource-limited setting: a retrospective study on the impact of HIV infection and its treatment,” Journal of Acquired Immune Deficiency Syndromes, vol. 56, no. 4, pp. 312–319, 2011.
[36]  W. O. Mwanda, S. C. Remick, and C. Whalen, “Adult Burkitt’s lymphoma in patients with and without human immunodeficiency virus infection in Africa,” International Journal of Cancer, vol. 92, pp. 687–691, 2001.
[37]  B. Coiffier, E. Lepage, J. Brière et al., “Chop chemotherapy plus rituximab compared with chop alone in elderly patients with diffuse large-B-cell lymphoma,” New England Journal of Medicine, vol. 346, no. 4, pp. 235–242, 2002.
[38]  G. Lenz, G. Wright, S. S. Dave, W. Xiao, J. Powell, and H. Zhao, “Stromal gene signatures in large-B-cell lymphomas,” New England Journal of Medicine, vol. 359, pp. 2313–2323, 2008.
[39]  M. Hummel, S. Bentink, H. Berger et al., “A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling,” New England Journal of Medicine, vol. 354, no. 23, pp. 2419–2430, 2006.
[40]  S. S. Dave, K. Fu, G. W. Wright, L. T. Lam, P. Kluin, and E. J. Boerma, “Molecular diagnosis of Burkitt’s lymphoma,” New England Journal of Medicine, vol. 354, pp. 2431–2442, 2006.
[41]  P. P. Carbone, H. S. Kaplan, K. Musshoff, D. W. Smithers, and M. Tubiana, “Report of the committee on Hodgkin's disease staging classification,” Cancer Research, vol. 49, pp. 2112–2135, 1979.
[42]  J. Stebbing, V. Marvin, and M. Bower, “The evidence-based treatment of AIDS-related Non-Hodgkin's lymphoma,” Cancer Treatment Reviews, vol. 30, no. 3, pp. 249–253, 2004.
[43]  S. T. Lim and A. M. Levine, “Recent advances in acquired immunodeficiency syndrome (AIDS)-related lymphoma,” CA Cancer Journal for Clinicians, vol. 55, no. 4, pp. 229–241, 2005.
[44]  N. Mounier, M. Spina, and C. Gisselbrecht, “Modern management of non-Hodgkin lymphoma in HIV-infected patients,” British Journal of Haematology, vol. 136, no. 5, pp. 685–698, 2007.
[45]  L. D. Kaplan, D. J. Straus, M. A. Testa et al., “Low-dose compared with standard-dose m-BACOD chemotherapy for non- Hodgkin's lymphoma associated with human immunodeficiency virus infection,” New England Journal of Medicine, vol. 336, no. 23, pp. 1641–1648, 1997.
[46]  L. Ratner, J. Lee, S. Tang et al., “Chemotherapy for human immunodeficiency virus-associated non-Hodgkin's lymphoma in combination with highly active antiretroviral therapy,” Journal of Clinical Oncology, vol. 19, no. 8, pp. 2171–2178, 2001.
[47]  R. F. Little, S. Pittaluga, N. Grant et al., “Highly effective treatment of acquired immunodeficiency syndrome-related lymphoma with dose-adjusted EPOCH: impact of antiretroviral therapy suspension and tumor biology,” Blood, vol. 101, no. 12, pp. 4653–4659, 2003.
[48]  J. A. Sparano, S. Lee, M. G. Chen et al., “Phase II trial of infusional cyclophosphamide, doxorubicin, and etoposide in patients with HIV-associated non-Hodgkin's lymphoma: an Eastern Cooperative Oncology Group Trial (E1494),” Journal of Clinical Oncology, vol. 22, no. 8, pp. 1491–1500, 2004.
[49]  L. D. Kaplan, J. Y. Lee, R. F. Ambinder et al., “Rituximab does not improve clinical outcome in a randomized phase 3 trial of CHOP with or without rituximab in patients with HIV-associated non-Hodgkin lymphoma: AIDS-Malignancies Consortium Trial 010,” Blood, vol. 106, no. 5, pp. 1538–1543, 2005.
[50]  J. Orem, P. Fu, A. Ness, W. O. Mwanda, and S. C. Remick, “Oral combination chemotherapy in the treatment of AIDS-associated Hodgkin's disease,” East African Medical Journal, vol. 82, no. 9, pp. S144–S149, 2005.
[51]  S. T. Lim, R. Karim, B. N. Nathwani, A. Tulpule, B. Espina, and A. M. Levine, “AIDS-related Burkitt's lymphoma versus diffuse large-cell lymphoma in the pre-highly active antiretroviral therapy (HAART) and HAART eras: significant differences in survival with standard chemotherapy,” Journal of Clinical Oncology, vol. 23, no. 19, pp. 4430–4438, 2005.
[52]  A. Noy, L. Kaplan, J. Lee, E. Cesarman, and W. Tam, “Modified dose intensive R-CODOX-M/IVAC for HIV-associated Burkitt (BL) (AMC 048) shows efficacy and tolerability, and predictive potential of IRF4/MUM1 expression,” in Proceedings of the 13th International Conference on Malignancies in AIDS and Other Acquired Immunodeficiencies, abstract 014, p. 38, Bethesda, Md, USA, 2011.
[53]  J. A. Sparano, J. Y. Lee, L. D. Kaplan et al., “Rituximab plus concurrent infusional EPOCH chemotherapy is highly effective in HIV-associated B-cell non-Hodgkin lymphoma,” Blood, vol. 115, no. 15, pp. 3008–3016, 2010.
[54]  P. B. Hesseling, R. Broadhead, E. Molyneux et al., “Malawi pilot study of burkitt lymphoma treatment,” Medical and Pediatric Oncology, vol. 41, no. 6, pp. 532–540, 2003.
[55]  P. Hesseling, R. Broadhead, E. Mansvelt et al., “The 2000 burkitt lymphoma trial in Malawi,” Pediatric Blood and Cancer, vol. 44, no. 3, pp. 245–250, 2005.
[56]  P. B. Hesseling, E. Molyneux, F. Tchintseme et al., “Treating Burkitt's lymphoma in Malawi, Cameroon, and Ghana,” The Lancet Oncology, vol. 9, no. 6, pp. 512–513, 2008.
[57]  S. C. Remick, J. J. McSharry, B. C. Wolf et al., “Novel oral combination chemotherapy in the treatment of intermediate- grade and high-grade AIDS-related non-Hodgkin's lymphoma,” Journal of Clinical Oncology, vol. 11, no. 9, pp. 1691–1702, 1993.
[58]  S. C. Remick, N. Sedransk, R. Haase et al., “Oral combination chemotherapy in the management of AIDS-related lymphoproliferative malignancies,” Drugs, vol. 58, no. 3, pp. 99–107, 1999.
[59]  S. C. Remick, N. Sedransk, R. F. Haase et al., “Oral combination chemotherapy in conjunction with filgrastim (G-CSF) in the treatment of AIDS-related non-Hodgkin's lymphoma: evaluation of the role of G-CSF; Quality-of-life analysis and long-term follow-up,” American Journal of Hematology, vol. 66, no. 3, pp. 178–188, 2001.
[60]  R. J. Lingwood, P. Boyle, A. Milburn et al., “The challenge of cancer control in Africa,” Nature Reviews Cancer, vol. 8, no. 5, pp. 398–403, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133