全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparative Study on the Effects of Chloroquine and Artesunate on Histopathological Damages Caused by Plasmodium berghei in Four Vital Organs of Infected Albino Mice

DOI: 10.1155/2012/960758

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of the present study was to investigate the positive influence of chloroquine and artesunate on the pathological damages caused by Plasmodium berghei on vital organs of mice in an established infection. Healthy adult albino mice with average weight of 25?g were used for the study. Treated group was administered orally with 100?mg/kg of chloroquine and artesunate, respectively. Control animals were given water for the same period. Histological examination of the liver, spleen, lungs, and kidney revealed absence of accumulation of iron (haemosiderosis) in the liver, thickened alveolar wall, and interstitial mononuclear cells infiltration in the lungs of the artesunate group, while absence of emphysema in the lungs and megakaryoblast hyperplasia in the spleen was observed in the chloroquine group. Lymphoid hypoplasia in the chloroquine group and megakayoblast hyperplasia in the artesunate group were observed but not in the control group. Thus, the use of these drugs especially under the practice of self-medication should be prohibited in lands where they are still in use as antimalaria medicine. 1. Introduction Malaria is a disease that is caused in humans by parasites of the Plasmodium species through the bite of infected anopheles mosquitoes. About 3.3 billion people—half of the world's population—are at risk of malaria. Every year, this leads to about 250 million malaria cases and nearly one million deaths [1]. Nigeria is known for high prevalence of malaria [2–4] and it is a leading cause of morbidity and mortality in the country [3]. WHO recently listed Nigeria among high burden countries with limited evidence of decrease in malaria cases [5]. Cinchona bark is one of the most naturally occurring drugs. This natural product was used by the inhabitants of Peru to control malaria, and the Jesuits introduced this practice to Europe during the 1640s where it was rapidly accepted. However, it was not until 1820s that the active ingredient quinine was extracted from the bark and isolated. It was named by the French chemists Pierre Joseph Pelletier and Joseph Bienaimé Caventou [6]. Treatment of malaria involves supportive measures as well as specific antimalarial drugs. With early diagnosis and effective treatment, someone with malaria can expect a complete recovery [7]. There are several families of drugs used to treat malaria. Chloroquine (CQ) which was introduced in the 1940s and for many decades served as a cheap and reliable drug is no longer effective against P. falciparum due to the increasing emergence of chloroquine-resistant strains of the

References

[1]  African Medical and Research Foundation (17/062012), Malaria, New York, NY, USA, http://www.usa.amref.org/.
[2]  A. W. Obianime and J. S. Aprioku, “Comparative study of artesunate, acts and their combinants on the hormonal parameters of the male guinea-pig,” Nigerian Journal of Physiological Sciences, vol. 24, no. 2, pp. 101–106, 2009.
[3]  A. M. Izunya, A. O. Nwaopara, A. E. Aigbiremolen, M. A. C. Odike, G. A. Oaikhena, and J. K. Bankole, “Histological studies of the toxicity of artesunate on the testes in Wistar rats,” Biology and Medicine, vol. 2, no. 2, pp. 49–56, 2010.
[4]  R. A. B. Drury, E. A. Wallington, and R. Cameron, Carleton's Histological Techniques, Oxford University, New York, NY, USA, 4th edition, 1967.
[5]  World Heath Organization, Media Centre on Malaria: Fact sheet, 2010, http://www.who.int/mediacentre/factsheets/fs094/en/index.html.
[6]  R. Kyle and M. Shampe, “Discoverers of quinine,” Journal of the American Medical Association, vol. 229, no. 4, p. 462, 1974.
[7]  S. Pattanasin, S. Proux, D. Chompasuk et al., “Evaluation of a new Plasmodium lactate dehydrogenase assay (Optimal-IT) for the detection of malaria,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 97, no. 6, pp. 672–674, 2003.
[8]  W. Peters, “Drug resistance in malaria parasites of animals and man,” Advances in Parasitology, vol. 41, pp. 1–62, 1998.
[9]  J. Neequaye, J. Coene, and H. Taelman, “In vivo chloroquine-resistant falciparum malaria in Western Africa,” The Lancet, vol. 1, no. 8473, pp. 153–154, 1986.
[10]  Afrique Avenir, Nigeria to phase out chloroquine for malaria treatment. (news report published November 30th, 2010), 2010, http://www.afriqueavenir.org/en/2010/11/30/nigeria-to-phase-out-chloroquine-for-malaria-treatment/.
[11]  T. T. Hien, “An overview of the clinical use of artemisinin and its derivatives in the treatment of falciparum malaria in Vietnam,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 88, supplement 1, pp. 7–8, 1994.
[12]  T. Harinasuta and J. Karbwang, “Qinghaosu: a promising antimalarial,” Journal of American Medical Association, SEA, vol. 34, pp. 7–8, 1994.
[13]  N. J. White, “Qinghaosu (artemisinin): the price of success,” Science, vol. 320, no. 5874, pp. 330–334, 2008.
[14]  H. Nwanjo and G. Oze, “Acute hepatotocixity following administration of artesunate in guinea pigs,” The Internet Journal of Toxicology, vol. 4, no. 1, 2007.
[15]  A. F. David, J. R. Philip, R. C. Simon, B. Reto, and N. Solomon, “Antimalarial drug discovery: efficiency models for compound screening,” Nature Reviews, vol. 3, pp. 509–520, 2004.
[16]  L. T. Peter and V. K. Anatoli, “The current global malaria situation,” in Malaria Parasite Biology, Pathogenesis and Protection, pp. 11–22, ASM Press, Washington, DC, USA, 1998.
[17]  O. T. Soniran, O. A. Idowu, and O. O. Ajana, “Evaluation of in vivo antiplasmodial activities of extract of morinda morindiodes (Bak.) in the treatment of malaria in Ogun State,” International Journal of Biomedical and Health Sciences, vol. 7, no. 3, 2011.
[18]  P. C. C. Garnham, Malaria Parasites and Other Heamosporidia, Blackwell Scientific, Oxford, UK, 1966.
[19]  K. R. Desai, J. J. Dattani, D. K. Rajput, et al., “Effect of chronic administration of chloroquine on the gastrocnemius muscle, spleen and brain of Swiss albino mice,” Asian Journal of Traditional Medicines, vol. 5, no. 2, pp. 62–69, 2010.
[20]  T. Othman and R. O. A. Arowolo, “Effects of incremental doses of chloroquine phosphate on the formed elements of blood,” Tropical Medicine, vol. 40, no. 1, pp. 1–7, 1998.
[21]  D. J. Taylor, N. P. O. Green , and G. W. Stout, Biological Science, Cambridge University, Cambridge, UK, 3rd edition, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413