全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Malaria Knowledge, Concern, Land Management, and Protection Practices among Land Owners and/or Managers in Lowland versus Highland Ecuador

DOI: 10.4061/2011/765125

Full-Text   Cite this paper   Add to My Lib

Abstract:

To control malaria effectively, it is essential to understand the current knowledge, beliefs, concerns, land management practices, and mosquito bite protection methods in use by citizens. This study presents a comparative, quantitative, interview-based study of land owners and/or managers ( ) in the Ecuadorian lowlands (presently considered malarious) ( ) and highlands (potentially malarious in the future) ( ). Although respondents had a strong understanding of where the disease occurs in their own country and of the basic relationship among standing water, mosquitoes, and malaria, about half of respondents in potential risk areas denied the current possibility of malaria infection on their own property. As well, about half of respondents with potential anopheline larval habitat did not report its presence, likely due to a highly specific definition of suitable mosquito habitat. Most respondents who are considered at risk of malaria currently use at least one type of mosquito bite prevention, most commonly bed nets. 1. Introduction Malaria remains a significant, debilitating and often lethal disease in many parts of South America, although its incidence, severity and impact is highly regional-dependent [1, 2]. In lowland Colombia, for example, malaria has been rated by focus groups as one of the most important health problems facing communities [3]. In Colombian and Ecuadorian communities, the cost of malaria prevention is much less expensive than the sum of direct costs (e.g., treatment, travel) and indirect costs (e.g., days of work lost) [4]. In both countries, national malaria control programs monitor the disease and carry out mosquito control programs in malaria endemic areas [5, 6]. Due to the success of these programs, statistics in Ecuador indicate that overall malaria incidence has declined over the last fifteen years, with occasional regional-scale epidemics at lower elevations (ca. < 1500?m) [7]. At higher elevations, malaria was epidemic in the Inter-Andean valleys of Ecuador (>1500?m) prior to the mid-1940s, when large-scale eradication efforts prevented ongoing malaria transmission in these regions, mainly through the reduction and possible elimination of local populations of Anopheles pseudopunctipennis [8]. Since that time, malaria has only caused illness in highland regions among migrants and travelers returning from low altitudes [1, 7]. Several reviews of the effects of various forms of global change on the incidence of insect-borne disease have stressed that malaria might move into higher-altitude regions as highland habitats become

References

[1]  Y. Rubio-Palis and R. H. Zimmerman, “Ecoregional classification of malaria vectors in the neotropics,” Journal of Medical Entomology, vol. 34, no. 5, pp. 499–510, 1997.
[2]  A. S. Gagnon, K. E. Smoyer-Tomic, and A. B. G. Bush, “The El Ni?o southern oscillation and malaria epidemics in South America,” International Journal of Biometeorology, vol. 46, no. 2, pp. 81–89, 2002.
[3]  T. Nieto, F. Méndez, and G. Carrasquilla, “Knowledge, beliefs and practices relevant for malaria control in an endemic urban area of the Colombian Pacific,” Social Science and Medicine, vol. 49, no. 5, pp. 601–609, 1999.
[4]  W. Ruiz and A. Kroeger, “The socioeconomic impact of malaria in Colombia and Ecuador,” Health Policy and Planning, vol. 9, no. 2, pp. 144–154, 1994.
[5]  H. Brochero and M. L. Qui?ones, “Retos de la entomología médica para la vigilancia en salud pública en Colombia: reflexión para el caso de malaria,” Biomédica, vol. 28, no. 1, pp. 18–24, 2008.
[6]  N. Espinoza López, L. Trivi?o Yépez, J. Alarcón y Alvaredo, and L. Vélez Nieto, “Contribución historica y actual del servicio nacional de control de enfermedades transmitidas por vectores (SNEM) para el mejoramiento de la salud y calidad de vida de los ecuatorianos en relación a las enfermedades transmitidas por vectores artrópodos,” in Sistema Nacional de Eradicaccion de Malaria, p. 21, Guayaquil, Ecuador, 2009.
[7]  “Datos malaricos del acumulado de los meses de enero a diciembre, area técnica epidemiologia,” in Sistema Nacional de Eradicacion de Malaria, Guayaquil, Ecuador, 1997–2008.
[8]  R. Levi-Castillo, “Anopheles pseudopunctipennis in the Los Chillos valley of Ecuador,” Journal of Economic Entomology, vol. 38, no. 5, pp. 385–390, 1945.
[9]  W. J. M. Martens, L. W. Niessen, J. Rotmans, T. H. Jetten, and A. J. McMichael, “Potential impact of global climate change on malaria risk,” Environmental Health Perspectives, vol. 103, no. 5, pp. 458–464, 1995.
[10]  P. R. Epstein, H. F. Diaz, S. Elias et al., “Biological and physical signs of climate change: focus on mosquito-borne diseases,” Bulletin of the American Meteorological Society, vol. 79, no. 3, pp. 409–417, 1998.
[11]  S. W. Lindsay and W. J. M. Martens, “Malaria in the African highlands: past, present and future,” Bulletin of the World Health Organization, vol. 76, no. 1, pp. 33–45, 1998.
[12]  P. Reiter, “Climate change and mosquito-borne disease,” Environmental Health Perspectives, vol. 109, no. 1, pp. 141–161, 2001.
[13]  S. I. Hay, D. J. Rogers, S. E. Randolph et al., “Hot topic or hot air? Climate change and malaria resurgence in East African highlands,” Trends in Parasitology, vol. 18, no. 12, pp. 530–534, 2002.
[14]  A. R. Moreno, “Climate change and human health in Latin America: drivers, effects, and policies,” Regional Environmental Change, vol. 6, no. 3, pp. 157–164, 2006.
[15]  M. E. Loevinsohn, “Climatic warming and increased malaria incidence in Rwanda,” The Lancet, vol. 343, no. 8899, pp. 714–718, 1994.
[16]  M. A. Malakooti, K. Biomndo, and G. D. Shanks, “Reemergence of epidemic malaria in the highlands of western Kenya,” Emerging Infectious Diseases, vol. 4, no. 4, pp. 671–676, 1998.
[17]  K. A. Lindblade, E. D. Walker, A. W. Onapa, J. Katungu, and M. L. Wilson, “Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda,” Tropical Medicine and International Health, vol. 5, no. 4, pp. 263–274, 2000.
[18]  T. Rutar, E. J. Baldomar Salgueiro, and J. H. Maguire, “Introduced Plasmodium vivax malaria in a Bolivian community at an elevation of 2,300?meters,” American Journal of Tropical Medicine and Hygiene, vol. 70, no. 1, pp. 15–19, 2004.
[19]  F. Lardeux, P. Loayza, B. Bouchité, and T. Chavez, “Host choice and human blood index of Anopheles pseudopunctipennis in a village of the Andean valleys of Bolivia,” Malaria Journal, vol. 6, 8 pages, 2007.
[20]  L. Pinault and F. Hunter, “New highland distribution records of multiple Anopheles species in the Ecuadorian Andes,” Malaria Journal, vol. 10, 236 pages, 2011.
[21]  K. A. Lindblade, J. Katungu, and M. L. Wilson, “Fever and malaria in highland Uganda,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 95, no. 5, pp. 502–503, 2001.
[22]  A. Kroeger and J. Alarcon, Malaria en Ecuador y Peru y estrategías alternativas de control, Ediciones Abya-Yala, Quito, Ecuador, 1993.
[23]  F. Pineda and C. A. Agudelo, “Percepciones, actitudes y prácticas en malaria en el Amazonas Colombiano,” Révista de Salud Pública, vol. 7, no. 3, pp. 339–348, 2005.
[24]  M. Tanner and C. Vlassoff, “Treatment-seeking behaviour for malaria: a typology based on endemicity and gender,” Social Science and Medicine, vol. 46, no. 4-5, pp. 523–532, 1998.
[25]  R. Lipowsky, A. Kroeger, and M. L. Vazquez, “Sociomedical aspects of malaria control in Colombia,” Social Science and Medicine, vol. 34, no. 6, pp. 625–637, 1992.
[26]  E. Sevilla-Casas, “Human mobility and malaria risk in the Naya river basin of Colombia,” Social Science and Medicine, vol. 37, no. 9, pp. 1155–1167, 1993.
[27]  D. J. Bradley, D. C. Warhurst, P. Barrett et al., “Fortnightly review: malaria prophylaxis: guidelines for travellers from Britain,” British Medical Journal, vol. 310, no. 6981, pp. 709–714, 1995.
[28]  G. E. Lenski and J. C. Leggett, “Caste, class, and deference in the research interview,” The American Journal of Sociology, vol. 65, no. 5, pp. 463–467, 1960.
[29]  L. E. Ca?izares and G. M. Lopez, Ecuador en Cifras, Instituto Nacional de Estatisticas y Censos, Government of Ecuador, Quito, Ecuador, 2011.
[30]  N. D. Weinstein, “Why it won't happen to me: perceptions of risk factors and susceptibility,” Health Psychology, vol. 3, no. 5, pp. 431–457, 1984.
[31]  F. Nuwaha, “People's perception of malaria in Mbarara, Uganda,” Tropical Medicine and International Health, vol. 7, no. 5, pp. 462–470, 2002.
[32]  S. E. Clarke, C. B?gh, R. C. Brown, M. Pinder, G. E. L. Walraven, and S. W. Lindsay, “Do untreated bednets protect against malaria?” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 95, no. 5, pp. 457–462, 2001.
[33]  K. A. Lindblade, J. E. Gimnig, L. Kamau et al., “Impact of sustained use of insecticide-treated bednets on malaria vector species distribution and culicine mosquitoes,” Journal of Medical Entomology, vol. 43, no. 2, pp. 428–432, 2006.
[34]  C. A. Miguel, V. L. Tallo, L. Manderson, and M. A. Lansang, “Local knowledge and treatment of malaria in Agusan del Sur, the Philippines,” Social Science and Medicine, vol. 48, no. 5, pp. 607–618, 1999.
[35]  H. L. Guyatt, S. K. Corlett, T. P. Robinson, S. A. Ochola, and R. W. Snow, “Malaria prevention in highland Kenya: indoor residual house-spraying vs. insecticide-treated bednets,” Tropical Medicine and International Health, vol. 7, no. 4, pp. 298–303, 2002.
[36]  S. Toovey, A. Jamieson, and M. Holloway, “Travelers' knowledge, attitudes and practices on the prevention of infectious diseases: results from a study at Johannesburg International Airport,” Journal of Travel Medicine, vol. 11, no. 1, pp. 16–22, 2004.
[37]  K. Van Herck, J. Zuckerman, F. Castelli, P. Van Damme, E. Walker, and R. Steffen, “Travelers' knowledge, attitudes, and practices on prevention of infectious diseases: results from a pilot study,” Journal of Travel Medicine, vol. 10, no. 2, pp. 75–78, 2003.
[38]  A. Wilder-Smith, N. S. Khairullah, J. H. Song, C. Y. Chen, and J. Torresi, “Travel health knowledge, attitudes and practices among australasian travelers,” Journal of Travel Medicine, vol. 11, no. 1, pp. 9–15, 2004.
[39]  D. Pedersen and C. Coloma, “Traditional medicine in Ecuador: the structure of the non-formal health systems,” Social Science and Medicine, vol. 17, no. 17, pp. 1249–1255, 1983.
[40]  S. H. Muela, J. M. Ribera, and M. Tanner, “Fake malaria and hidden parasites—the ambiguity of malaria,” Anthropology and Medicine, vol. 5, no. 1, pp. 43–61, 1998.
[41]  D. S. Tarimo, G. K. Lwihula, J. N. Minjas, and I. C. Bygbjerg, “Mothers' perceptions and knowledge on childhood malaria in the holendemic Kibaha district, Tanzania: implications for malaria control and the IMCI strategy,” Tropical Medicine and International Health, vol. 5, no. 3, pp. 179–184, 2000.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413