全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Parasitologic Assessment of Two-Dose and Monthly Intermittent Preventive Treatment of Malaria during Pregnancy with Sulphadoxine-Pyrimethamine (IPTP-SP) in Lagos, Nigeria

DOI: 10.4061/2011/932895

Full-Text   Cite this paper   Add to My Lib

Abstract:

Intermittent preventive treatment of malaria with sulphadoxine-pyrimethamine (IPTP-SP) is a key strategy in the control of malaria in pregnancy. However, reports of increasing level of resistance to SP using nonpregnant populations have made it imperative for the continuous monitoring of the efficacy of SP in pregnant women. This study assessed using microscopy, monthly dosing and the standard two-dose regimen among 259 pregnant women attending antenatal clinics in Lagos, Nigeria that consented 122 in the two-dose arm (Arm A) and 137 in the monthly dose arm (Arm B). Baseline parasitaemia in the two groups was 5 (4.1%) and 3 (2.2%) in Arms A and B, respectively. Few of the women developed parasitaemia after the initial SP dose in Arms A 4 (3.3%) and B 2 (1.5%). However, none of the women had malaria infection after the second dose in both Arms. Although IPTP-SP is suggestive of protecting the women from malaria infection, there was no significant difference observed between the two dosing schemes. 1. Introduction An estimated 25–30 million women become pregnant annually in malaria-endemic areas of Africa, most of them living in areas of stable malaria transmission [1]. The immunosuppression associated with pregnancy and the absence of specific immunity to the unique subset of parasites (VAR2CSA) that sequester in the placenta, especially in primigravidae, are the reasons for the increased susceptibility of pregnant women to malaria infection [2, 3]. However, the antidisease immunity acquired prior to pregnancy keeps the infection asymptomatic in presentation. However, the subclinical infection still poses a great danger to both the mother and the foetus. The presence of parasites in the placenta can lead to maternal anaemia (potentially responsible for maternal death when severe), low birth weight (LBW), congenital malaria, premature delivery, abortion, and stillbirth [4–6]. Current strategies to control malaria in pregnancy are the intermittent preventive treatment with sulphadoxine-pyrimethamine (IPTp-SP), use of insecticide-treated bed nets, and case management of malaria illness and anemia [1, 7]. IPTp-SP is the administration of two or more therapeutic doses of SP regardless of the presence of malarial infection, at an interval of at least four weeks, starting in the second trimester of pregnancy (after quickening). The first SP dose is administered in the second trimester after quickening and the second dose of SP in the third trimester to ensure that the placenta is cleared of malaria parasites at the time of rapid foetal growth [8]. Two doses of

References

[1]  World Health Organization, “A strategic framework for malaria prevention and control during pregnancy in the African region,” Tech. Rep. AFR/MAL/04/01, WHO Regional Office for Africa, Brazzaville, Republic of Congo, 2004.
[2]  M. Fried and P. E. Duffy, “Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta,” Science, vol. 272, no. 5267, pp. 1502–1504, 1996.
[3]  L. Hviid and A. Salanti, “VAR2CSA and protective immunity against pregnancy-associated Plasmodium falciparum malaria,” Parasitology, vol. 134, no. 13, pp. 1871–1876, 2007.
[4]  R. Steketee, J. Wirima, A. Hightower, L. Slutsker, D. L. Heymann, and J. G. Breman, “The effect of malaria and malaria prevention in pregnancy on offspring birthweight, prematurity, and intrauterine growth retardation in Rural Malawi,” American Journal of Tropical Medicine and Hygiene, vol. 55, no. 1, pp. 33–41, 1996.
[5]  R. D. Newman, A. Hailemariam, D. Jimma et al., “Burden of malaria during pregnancy in areas of stable and unstable transmission in Ethiopia during a nonepidemic year,” Journal of Infectious Diseases, vol. 187, no. 11, pp. 1765–1772, 2003.
[6]  S. J. Rogerson and P. Boeuf, “New approaches to pathogenesis of malaria in pregnancy,” Parasitology, vol. 134, no. 13, pp. 1883–1893, 2007.
[7]  Federal Ministry of Health, “National guidelines and strategies for malaria prevention and control during pregnancy,” Tech. Rep., Federal Ministry of Health, Nigeria, 2005.
[8]  N. J. White, “Intermittent presumptive treatment for malaria: a better understanding of the pharmacodynamics will guide more rational policymaking,” PLoS Medicine, vol. 2, pp. 28–33, 2005.
[9]  World Health Organization, “WHO expert committee on malaria. Eighteenth report,” WHO Technical Report Series, World Health Organization, Geneva, Switzerland, 1986.
[10]  B. L. Nahlen, T. Alakija, O. Ogunbode et al., “Lack of efficacy of pyrimethamine prophylaxis in pregnant Nigerian women,” The Lancet, vol. 2, no. 8667, pp. 830–834, 1989.
[11]  S. B. Sirima, R. Sawadogo, A. C. Moran et al., “Failure of a chloroquine chemoprophylaxis program to adequately prevent malaria during pregnancy in Koupela district, Burkina Faso,” Clinical Infectious Diseases, vol. 36, no. 11, pp. 1374–1382, 2003.
[12]  M. Diallo, C. A. Dabo, R. Saye et al., “Randomized clinical trial of two malaria prophylaxis regimens for pregnant women in Faladie, Mali,” Medecine Tropicale, vol. 67, no. 5, pp. 477–480, 2007.
[13]  K. Kayentao, M. Mungai, M. Parise et al., “Assessing malaria burden during pregnancy in Mali,” Acta Tropica, vol. 102, no. 2, pp. 106–112, 2007.
[14]  I. U. Tukur, T. D. Thacher, A. S. Sagay, and J. K. Madaki, “A comparison of sulfadoxine-pyrimethamine with chloroquine and pyrimethamine for prevention of malaria in pregnant Nigerian women,” American Journal of Tropical Medicine and Hygiene, vol. 76, no. 6, pp. 1019–1023, 2007.
[15]  H. O. Alkadi, “Antimalarial drug toxicity: a review,” Chemotherapy, vol. 53, no. 6, pp. 385–391, 2007.
[16]  D. J. Bzik, W. B. Li, T. Horii, and J. Inselburg, “Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 23, pp. 8360–8364, 1987.
[17]  C. H. Sibley, J. E. Hyde, P. F. Sims et al., “Pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: what next?” Trends in Parasitology, vol. 17, no. 12, pp. 582–588, 2001.
[18]  C. R. Jones and S. M. Ovenell, “Determination of plasma concentrations of dapsone, monoacetyl dapsone and pyrimethamine in human subjects dosed with maloprim,” Journal of Chromatography, vol. 163, no. 2, pp. 179–185, 1979.
[19]  M. D. Coleman, G. W. Mihaly, G. Edwards, R. E. Howells, and A. M. Breckenridge, “The disposition of pyrimethamine base and pyrimethamine pamoate in the mouse: effect of route of administration,” Biopharmaceutics and Drug Disposition, vol. 7, no. 2, pp. 173–182, 1986.
[20]  M. D. Edstein, “Pharmacokinetics of sulfadoxine and pyrimethamine after Fansidar administration in man,” Chemotherapy, vol. 33, no. 4, pp. 229–233, 1987.
[21]  E. Weidekamm, H. Plozza-Nottebrock, I. Forgo, and U. C. Dubach, “Plasma concentrations of pyrimethamine and sulfadoxine and evaluation of pharmacokinetic data by computerized curve fitting,” Bulletin of the World Health Organization, vol. 60, no. 1, pp. 115–122, 1982.
[22]  P. E. Brentlinger, C. B. Behrens, and M. A. Micek, “Challenges in the concurrent management of malaria and HIV in pregnancy in sub-Saharan Africa,” Lancet Infectious Diseases, vol. 6, no. 2, pp. 100–111, 2006.
[23]  F. Forna, M. McConnell, F. N. Kitabire et al., “Systematic review of the safety of trimethoprim-sulfamethoxazole for prophylaxis in HIV-infected pregnant women: implications for resource-limited settings,” AIDS Reviews, vol. 8, no. 1, pp. 24–36, 2006.
[24]  J. E. Gimnig, J. R. MacArthur, M. M'bang'ombe et al., “Severe cutaneous reactions to sulfadoxine-pyrimethamine and trimethoprim-sulfamethoxazole in Blantyre District, Malawi,” American Journal of Tropical Medicine and Hygiene, vol. 74, no. 5, pp. 738–743, 2006.
[25]  S. J. Filler, P. Kazembe, M. Thigpen et al., “Randomized trial of 2-dose versus monthly sulfadoxine-pyrimethamine intermittent preventive treatment for malaria in HIV-positive and HIV-negative pregnant women in Malawi,” Journal of Infectious Diseases, vol. 194, no. 3, pp. 286–293, 2006.
[26]  D. H. Hamer, V. Mwanakasale, W. B. MacLeod et al., “Two-dose versus monthly intermittent preventive treatment of malaria with sulfadoxine-pyrimethamine in HIV-seropositive pregnant Zambian women,” Journal of Infectious Diseases, vol. 196, no. 11, pp. 1585–1594, 2007.
[27]  Federal Ministry of Health, “National antimalarial treatment policy,” Federal Ministry of Health Nigeria, National Malaria and Vector Control Division Abuja, Nigeria, 2005.
[28]  C. O. Agomo, W. A. Oyibo, R. I. Anorlu, and P. U. Agomo, “Prevalence of malaria in pregnant women in Lagos, South-West Nigeria,” Korean Journal of Parasitology, vol. 47, no. 2, pp. 179–183, 2009.
[29]  World Health Organization, Preventing and Controlling Iron Deficiency Anaemia Through Primary Health Care, WHO publications, Geneva, Switzerland, 1989.
[30]  M. M. Nyunt, I. Adam, K. Kayentao et al., “Pharmacokinetics of sulphadoxine and pyrimethamine in intermittent preventive treatment of malaria in pregnancy,” Clinical Pharmacology and Therapeutics, vol. 87, no. 2, pp. 226–234, 2010.
[31]  T. K. Mutabingwa, K. Muze, R. Ord et al., “Randomized trial of artesunate+amodiaquine, sulfadoxine-pyrimethamine+amodiaquine, chlorproguanal-dapsone and SP for malaria in pregnancy in Tanzania,” PLoS ONE, vol. 4, no. 4, Article ID e5138, 2009.
[32]  P. Bloland, “Drug resistance in malaria,” WHO Monograph WHO/CDS/CSR/DRS/2001.4, World Health Organization, Geneva, Switzerland, 2001.
[33]  G. Kalanda, J. Hill, F. Verhoeff, and B. Brabin, “Comparative efficacy of chloroquine and sulphadoxine-pyrimethamine in pregnant women and children: a meta-analysis,” Tropical Medicine and International Health, vol. 11, no. 5, pp. 569–577, 2006.
[34]  M. E. Parise, J. G. Ayisi, B. L. Nahlen et al., “Efficacy of sulfadoxine-pyrimethamine for prevention of placental malaria in an area of Kenya with a high prevalence of malaria and human immunodeficiency virus infection,” American Journal of Tropical Medicine and Hygiene, vol. 59, no. 5, pp. 813–822, 1998.
[35]  A. M. van Eijk, J. G. Ayisi, F. O. ter Kuile et al., “Effectiveness of intermittent preventive treatment with sulphadoxine-pyrimethamine for control of malaria in pregnancy in western Kenya: a hospital-based study,” Tropical Medicine and International Health, vol. 9, no. 3, pp. 351–360, 2004.
[36]  C. J. Gill, W. B. MacLeod, V. Mwanakasale et al., “Inferiority of single-dose sulfadoxine-pyrimethamine intermittent preventive therapy for malaria during pregnancy among HIV-positive Zambian women,” Journal of Infectious Diseases, vol. 196, no. 11, pp. 1577–1584, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413