Malaria resurgence risk in Morocco depends, among other factors, on environmental changes as well as the introduction of parasite carriers. The aim of this paper is to analyze the receptivity of the Loukkos area, large wetlands in Northern Morocco, to quantify and to map malaria transmission risk in this region using biological and environmental data. This risk was assessed on entomological risk basis and was mapped using environmental markers derived from satellite imagery. Maps showing spatial and temporal variations of entomological risk for Plasmodium vivax and P. falciparum were produced. Results showed this risk to be highly seasonal and much higher in rice fields than in swamps. This risk is lower for Afrotropical P. falciparum strains because of the low infectivity of Anopheles labranchiae, principal malaria vector in Morocco. However, it is very high for P. vivax mainly during summer corresponding to the rice cultivation period. Although the entomological risk is high in Loukkos region, malaria resurgence risk remains very low, because of the low vulnerability of the area. 1. Background Until recently, malaria was endemic in Morocco. Three plasmodial species were present: Plasmodium falciparum, P. vivax, and P. malariae. Plasmodium falciparum was the dominant species until the beginning of the 1950s, when P. vivax became more important [1]. The most affected areas were those, which were most inundated, mainly the plains comprising swamps, which are the main breeding sites of the major vector in Morocco: Anopheles labranchiae. Drainage and irrigation projects, undertaken at the beginning of the twentieth century have contributed to the reduction of malaria transmission, but disease was still common in the early 1960s. In 1965, a National Malaria Control Program was launched. It was based on vector control using DDT indoor residual spraying and parasite reservoir control by treatment and chemoprophylaxis. The effect on P. falciparum transmission was rapid, and the last autochthonous case was notified in 1973. Thirty years later, it was possible to interrupt P. vivax transmission. In 2008, Morocco undertook the process for certification of malaria-free status according to WHO criteria. However, Morocco still reports, every year, about one hundred of imported malaria cases. These are mainly detected in large urban areas, mainly Casablanca and Rabat, but also Fes and Agadir. Most of imported cases are P. falciparum originating from sub-Saharan Africa [2, 3]. Thus, malaria resurgence in Morocco remains a risk, because vectors are present in formerly
References
[1]
World Health Organization, Malaria in Morocco: Relentless Efforts towards the Goal of Elimination, WHO-EM/MAL/345/E 2007, World Health Organization, 2007.
[2]
N. Soraa, M. K. Moudden, R. Moutaj, M. Zyani, A. Hda, and M. Jana, “Paludisme d'importation à l'h?pital militaire Avicenne de Marrakech: à propos de 68 cas en quatre ans,” Médecine et Armées, vol. 34, no. 5, pp. 463–467, 2006.
[3]
A. El Ouali Lalami, M. Cherigui, S. Ibnsouda Koraichi, S. Maniar, N. El Maimouni, and M. Rhajaoui, “Le paludisme importé dans le Centre Nord du Maroc entre 1997 à 2007,” Cahiers Santé, vol. 19, no. 1, pp. 43–47, 2009.
[4]
J. H. Pull, “Simple méthodologie pour estimer le potentiel paludogène d'une zone,” Document Technique, Division du Paludisme à l'Organisation Mondiale de la Santé, 1979.
[5]
C. Faraj, S. Ouahabi, E. Adlaoui, D. Boccolini, R. Romi, and R. El Aouad, “Risque de réémergence du paludisme au Maroc étude de la capacité vectorielle d'Anopheles labranchiae dans une zone rizicole au nord du pays,” Parasite, vol. 15, no. 4, pp. 605–610, 2008.
[6]
C. Faraj, E. Adlaoui, S. Ouahabi, M. Rhajaoui, D. Fontenille, and M. Lyagoubi, “Entomological investigations in the region of the last malaria focus in Morocco,” Acta Tropica, vol. 109, no. 1, pp. 70–73, 2009.
[7]
J. Brunhes, A. Rhaim, B. Geoffroy, G. Angel, and J. P. Hervy, Les Moustiques de l'Afrique Méditerranéenne. Logiciel d'Identification et d'Enseignement, IRD & IPT, Montpellier, France, 2000, CDRom collection didactique.
[8]
J. Proft, W. A. Maier, and H. Kampen, “Identification of six sibling species of the Anopheles maculipennis complex (Diptera: Culicidae) by a polymerase chain reaction assay,” Parasitology Research, vol. 85, no. 10, pp. 837–843, 1999.
[9]
C. Garrett-Jones, “The human blood index of malaria vectors in relation to epidemiological assessment,” Bulletin of the World Health Organization, vol. 30, pp. 241–261, 1964.
[10]
G. Macdonald, The Epidemiology and Control of Malaria, Oxford University Press, London, UK, 1957.
[11]
T. S. Detinova, Age-Grouping Methods in Diptera of Medical Importance with Special Reference to Some Vectors of Malaria, Monograph Series, 47, World Health Organization, 1963.
[12]
J. C. Beier, P. V. Perkins, R. A. Wirtz et al., “Bloodmeal identification by direct enzyme-linked immunosorbent assay (ELISA), tested on Anopheles (Diptera: Culicidae) in Kenya,” Journal of Medical Entomology, vol. 25, no. 1, pp. 9–16, 1988.
[13]
G. Houel, “Note sur l'orientation trophique de An. labranchiae au Maroc,” Bulletin de l'Institut d'Hygiène du Maroc, vol. 15, no. 3, pp. 387–391, 1955.
[14]
M. Holstein, “Problèmes de l'anophelisme au Maroc,” Rapport OMS, 1966.
[15]
C. Faraj, S. Ouahabi, E. Adlaoui, and R. El Aouad, “Etat actuel des connaissances sur les Anophèles du Maroc (Diptera: Culicidae): systématique, distribution géographique et compétence vectorielle,” Revue d'Epidémiologie et de Santé Publique, vol. 58, no. 5, pp. 349–357, 2010.
[16]
C. Toty, H. Barré, G. Le Goff, et al., “Malaria risk in Corsica, former hot spot of malaria in France,” Malaria Journal, vol. 9, no. 1, article 231, 2010.
[17]
A. Tran, N. Pon?on, C. Toty, et al., “Using remote sensing to map larval and adult populations of Anopheles hyrcanus (Diptera: Culicidae) a potential malaria vector in Southern France,” International Journal of Health Geographics, vol. 7, no. 9, 2008.
[18]
C. Faraj, E. Adlaoui, N. Saaf et al., “Note sur le complexe Anopheles maculipennis au Maroc,” Bulletin de la Société de Pathologie Exotique, vol. 97, no. 4, pp. 293–294, 2004.
[19]
C. Faraj, E. Adlaoui, C. Brengues, D. Fontenille, and M. Lyagoubi, “Resistance d'An. labranchiae au DDT au Maroc: mise au point, identification des mécanismes et choix d'un insecticide de remplacement,” Eastern Mediterranean Health Journal, vol. 14, no. 4, pp. 776–783, 2008.
[20]
J. Gaud, F. Faure, and A. Maurice, “Répartition et fréquence relative des espèces anophéliennes au Maroc,” Annales de Parasitologie Humaine et Comparée, vol. 25, pp. 53–60, 1950.
[21]
G. Houel and F. Donadille, “Vingt ans de lutte antipaludique au Maroc,” Bulletin de l'Institut d'Hygiène du Maroc, vol. 13, pp. 3–51, 1953.
[22]
G. Sicault, A. Messerlin, J. Lumeau, and J. Fritz, “Le paludisme dans le Gharb,” Bulletin de l'Institut d'Hygiène du Maroc, vol. 5, pp. 5–91, 1935.
[23]
Y. Guy and M. Holstein, “Données récentes sur les Anophèles du Maghreb,” Archives de l'Institut Pasteur d'Algerie, vol. 46, pp. 142–150, 1968.
[24]
G. Metge, “Contribution à l'étude ècologique et biologique d'Anopheles labranchiae au Maroc: activitè des imagos, dynamique des stades pré-imaginaux dans la région de Sidi Bettache,” Bulletin d'Ecologie, vol. 22, pp. 419–426, 1991.
[25]
D. Houel, “La lute antipaludique dans les zones rizicoles du Maroc,” Bulletin de l'Institut d'Hygiène du Maroc, vol. 14, pp. 43–90, 1954.
[26]
J. Gaud, D. Mechali, and J. Delrieu, “Riziculture et paludisme au Maroc,” Bulletin de l'Institut d'Hygiène du Maroc, vol. 9, pp. 181–190, 1949.
[27]
C. Garrett-Jones and G. R. Shidrawi, “Malaria vectorial capacity of a population of Anopheles gambiae: an exercise in epidemiological entomology,” Bulletin of the World Health Organization, vol. 40, no. 4, pp. 531–545, 1969.
[28]
N. Pon?on, A. Tran, C. Toty, A. J. F. Luty, and D. Fontenille, “A quantitative risk assessment approach for mosquito-borne diseases: malaria re-emergence in southern France,” Malaria Journal, vol. 7, article 147, 2008.
[29]
R. Romi, G. Pierdominici, C. Severini, et al., “Status of malaria vectors in Italy,” Journal of Medical Entomology, vol. 34, no. 3, pp. 263–271, 1997.
[30]
R. Romi, G. Sabatinelli, and G. Majori, “Could malaria reappear in Italy?” Emerging Infectious Diseases, vol. 7, no. 6, pp. 915–919, 2001.
[31]
N. Pon?on, T. Balenghien, C. Toty, et al., “Effects of local anthropogenic changes on potential malaria vector Anopheles hyrcanus and west Nile virus vector Culex modestus, Camargue, France,” Emerging Infectious Diseases, vol. 13, no. 12, pp. 1810–1815, 2007.
[32]
J. De Zulueta, C. D. Ramsdale, and M. Coluzzi, “Receptivity to malaria in Europe,” Bulletin of the World Health Organization, vol. 52, no. 1, pp. 109–111, 1975.
[33]
M. A. Oshaghi, F. Yaaghoobi, and M. R. Abaie, “Pattern of mitochondrial DNA variation between and within Anopheles stephensi (Diptera: Culicidae) biological forms suggests extensive gene flow,” Acta Tropica, vol. 99, no. 2-3, pp. 226–233, 2006.
[34]
A. Mehravaran, M. A. Oshaghi, H. Vatandoost, et al., “First report on Anopheles fluviatilis U in southeastern Iran,” Acta Tropica, vol. 117, no. 2, pp. 76–81, 2011.
[35]
S. R. Naddaf, M. A. Oshaghi, H. Vatandoost, and M. Assmar, “Molecular characterization of Anopheles fluviatilis species complex in the Islamic Republic of Iran,” Eastern Mediterranean Health Journal, vol. 9, no. 3, pp. 257–265, 2003.