Gas-solid heterogeneous photooxidation of toluene over TiO 2 catalyst was studied to investigate the factors controlling the catalytic activities. The toluene photooxidation behavior on TiO 2 was strongly affected by the formation and oxidation behavior of intermediate compounds on TiO 2, and their accumulation decreased the reaction rate for toluene photooxidation. The formation and oxidation behavior of the byproduct compounds depended on the initial concentration of toluene and water vapor. In situ Fourier transform infrared (FTIR) studies revealed that water vapor promoted the cleavage of the aromatic ring and facilitated CO 2 formation. At the reaction temperature of 300 K, the deposition of Pt on TiO 2 suppressed CO formation, whereas catalytic activity was decreased due to the increase in the amount of intermediate compounds. On the other hand, Pt/TiO 2 showed higher activity than TiO 2 at 353 K, in spite of the increase of the intermediate compounds.
References
[1]
Linsebigler, A.L.; Lu, G.; Yates, J.T., Jr. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758, doi:10.1021/cr00035a013.
Agrios, A.G.; Pichat, P. State of the art and perspectives on materials and applications of photocatalysis over TiO2. J. Appl. Electrochem. 2005, 35, 655–663, doi:10.1007/s10800-005-1627-6.
Ollis, D.F. Photocatalytic purification and remediation of contaminated air and water. C. R. Acad. Sci. Ser. 2000, 3, 405–411.
[6]
Wang, S.; Ang, H.M.; Tade, M.O. Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environ. Int. 2007, 33, 694–705, doi:10.1016/j.envint.2007.02.011.
[7]
Ibusuki, T.; Takeuchi, K. Toluene oxidation on U.V.-irradiated titanium dioxide with and without O2, NO2 or H2O at ambient temperature. Atmos. Environ. 1986, 20, 1711–1715, doi:10.1016/0004-6981(86)90119-8.
[8]
Obee, T.N.; Brown, R.T. TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environ. Sci. Technol. 1995, 29, 1223–1231, doi:10.1021/es00005a013.
[9]
Ameen, M.M.; Raupp, G.B. Reversible catalyst deactivation in the photocatalytic oxidation of dilute O-xylene in air. J. Catal. 1999, 184, 112–122, doi:10.1006/jcat.1999.2442.
[10]
Cao, L.X.; Gao, Z.; Suib, S.L.; Obee, T.N.; Hay, S.O.; Freihaut, J.D. Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: Studies of deactivation and regeneration. J. Catal. 1999, 184, 112–122, doi:10.1006/jcat.1999.2442.
[11]
D'Hennezel, O.; Pichat, P.; Ollis, D.F. Benzene and toluene gas-phase photocatalytic degradation over H2O and HCL pretreated TiO2 by-products and mechanisms. J. Photochem. Photobiol. A 1998, 118, 197–204, doi:10.1016/S1010-6030(98)00366-9.
[12]
Mendez-Roman, R.; Cardona-Martinez, N. Relationship between the formation of surface species and catalyst deactivation during the gas-phase photocatalytic oxidation of toluene. Catal. Today 1998, 40, 353–365, doi:10.1016/S0920-5861(98)00064-9.
[13]
Maira, A.J.; Coronado, J.M.; Augugliaro, V.; Yeung, K.L.; Conesa, J.C.; Soria, J. Fourier transform infrared study of the performance of nanostructured TiO2 particles for the photocatalytic oxidation of gaseous toluene. J. Catal. 2001, 202, 413–420.
[14]
Marci, G.; Addamo, M.; Augugliaro, V.; Coluccia, S.; García-López, E.; Loddo, V.; Martra, G.; Palmisano, L.; Schiavello, M. Photocatalytic oxidation of toluene on irradiated TiO2: Comparison of degradation performance in humidified air, in water and in water containing a zwitterionic surfactant. J. Photochem. Photobiol. A 2003, 160, 105–114, doi:10.1016/S1010-6030(03)00228-4.
[15]
Blount, M.C.; Falconer, J.L. Steady-state surface species during toluene photocatalysis. Appl. Catal. B 2002, 139, 39–50.
[16]
Debono, O.; Thevenet, F.; Gravejat, P.; Hequet, V.; Raillard, C.; Lecoq, L.; Locoge, N. Toluene photocatalytic oxidation at ppbv levels: Kinetic investigation and carbon balance determination. Appl. Catal. B 2011, 106, 600–608, doi:10.1016/j.apcatb.2011.06.021.
[17]
Vildozo, D.; Portel, R.; Ferronato, C.; Chovelon, J.M. Photocatalytic oxidation of 2-propanol/toluene binary mixtures at indoor air concentration levels. Appl. Catal. B 2011, 107, 347–354, doi:10.1016/j.apcatb.2011.07.035.
[18]
Sleiman, M.; Conchon, P.; Ferronato, C.; Chovelon, J.M. Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization. Appl. Catal. B 2009, 86, 159–165, doi:10.1016/j.apcatb.2008.08.003.
[19]
Thompson, T.L.; Yates, J.T., Jr. TiO2-based photocatalysis: Surface defects, oxygen and charge transfer. Top. Catal. 2005, 35, 197–210, doi:10.1007/s11244-005-3825-1.
[20]
Thompson, T.L.; Yates, J.T., Jr. Surface science studies of the photoactivation of TiO2-new photochemical processes. Chem. Rev. 2006, 106, 4428–4453, doi:10.1021/cr050172k.
[21]
Henderson, M.A. A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 2011, 66, 185–297, doi:10.1016/j.surfrep.2011.01.001.
[22]
Fu, X.Z.; Zeltner, W.A.; Anderson, M.A. The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts. Appl. Catal. B 1995, 6, 209–224, doi:10.1016/0926-3373(95)00017-8.
[23]
Li, Y.; Huang, J.C.; Peng, T.; Xu, J.; Zhao, X.J. Photothermocatalytic synergetic effect leads to high efficient detoxification of benzene on TiO2 and Pt/TiO2 nanocomposite. ChemCatChem 2010, 2, 1082–1087, doi:10.1002/cctc.201000085.
[24]
Einaga, H.; Futamura, S.; Ibusuki, T. Photocatalytic decomposition of benzene over TiO2 in a humidified airstream. Phys. Chem. Chem. Phys. 1999, 1, 4903–4908, doi:10.1039/a906214i.
[25]
Einaga, H.; Futamura, S.; Ibusuki, T. Complete oxidation of benzene in gas phase by platinized titania photocatalysts. Environ. Sci. Technol. 2001, 35, 1880–1884.
[26]
Einaga, H.; Futamura, S.; Ibusuki, T. Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air, comparison of decomposition behavior on photoirradiated TiO2 catalyst. Appl. Catal. B 2002, 38, 215–225, doi:10.1016/S0926-3373(02)00056-5.
[27]
Einaga, H.; Ibusuki, T.; Futamura, S. Improvement of catalyst durability by deposition of Rh on TiO2 in photooxidation of aromatic compounds. Environ. Sci. Technol. 2004, 38, 285–289, doi:10.1021/es034336v.
[28]
Einaga, H.; Ibusuki, T.; Futamura, S. Photocatalytic oxidation of benzene in air. J. Solar Energy Eng. 2004, 126, 789–793, doi:10.1115/1.1687402.
[29]
Suh, M.; Bagus, P.S.; Pak, S.; Rosynek, M.P.; Lunsford, J.H. Reactions of hydroxyl radicals on titania, silica, alumina, and gold surfaces. J. Phys. Chem. B 2000, 104, 2736–2742, doi:10.1021/jp993653e.
[30]
Hernández-Alonso, M.D.; Tejedor-Tejedor, I.; Coronado, J.M.; Anderson, M.A. Operando FTIR study of the photocatalytic oxidation of methylcyclohexane and toluene in air over TiO2-ZrO2 thin films: Influence of the aromaticity of the target molecule on deactivation. Appl. Catal. B 2011, 101, 283–293, doi:10.1016/j.apcatb.2010.09.029.
[31]
Li, X.; Zhu, Z.; Zhao, Q.; Liu, S. FT-IR study of the photocatalytic degradation of gaseous toluene over UV-irradiated TiO2 microballs: Enhanced performance by hydrothermal treatment in alkaline solution. Appl. Surf. Sci. 2011, 257, 4709–4714.
[32]
Augugliaro, V.; Coluccia, S.; Loddo, V.; Marchese, L.; Martra, G.; Palmisano, L.; Schiavello, M. Photocatalytic Oxidation of Gaseous Toluene on Anatase TiO2 Catalyst: Mechanistic Aspects and FT-IR Investigation. Appl. Catal. B 1999, 20, 15–27, doi:10.1016/S0926-3373(98)00088-5.
[33]
Martra, G.; Coluccia, S.; Marchese, L.; Augugliaro, V.; Loddo, V.; Palmisano, L.; Schiavello, M. The role of H2O in the photocatalytic oxidation of toluene in vapour phase on anatase TiO2 catalyst a FTIR study. Catal. Today 1999, 53, 695–702, doi:10.1016/S0920-5861(99)00156-X.
[34]
Deveau, P.A.; Arsac, F.; Thivel, P.X.; Ferronato, C.; Delpech, F.; Chovelon, J.M.; Kaluzny, P.; Monnetd, C. Different methods in TiO2 photodegradation mechanism studies: Gaseous and TiO2-adsorbed phases. J. Hazard. Mater. 2007, 144, 692–697, doi:10.1016/j.jhazmat.2007.01.097.
[35]
Einaga, H.; Harada, M.; Futamura, S.; Ibusuki, T. Generation of active sites for CO photooxidation on TiO2 by platinum deposition. J. Phys. Chem. B 2003, 107, 9290–9297.