全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Catalysts  2013 

Biomimetic Catalysts for Oxidation of Veratryl Alcohol, a Lignin Model Compound

DOI: 10.3390/catal3010232

Keywords: manganese, peroxidases, lignin, schiff bases, veratryl alcohol

Full-Text   Cite this paper   Add to My Lib

Abstract:

Kraft pulp has to be bleached to eliminate the chromophoric structures, which cause a darkening of the pulp. In Nature, an equivalent role is assumed by ligninolytic enzymes such as lignin peroxidases, manganese peroxidases and laccases. The development of low molecular weight manganese peroxidase mimics may achieve environmentally-safe bleaching catalysts for the industry. Herein we report the synthesis and characterization of six manganese(III) complexes 1– 6, incorporating dianionic hexadentate Schiff base ligands (H 2L 1-H 2L 4) and different anions. Complex 4, Mn 2L 2 2(H 2O) 2(DCA) 2 was crystallographically characterized. Complexes 1– 4 behave as more efficient mimics of peroxidase in contrast to 5– 6. We have studied the use of these complexes as catalysts for the degradation of the lignin model compound veratryl alcohol. The biomimetic catalysts were used in conjunction with chlorine-free inexpensive co-oxidants as dioxygen or hydrogen peroxide. Yields up to 30% of veratryl alcohol conversion to veratraldehyde have been achieved at room temperature in presence of air flow using 0.5% of catalyst.

References

[1]  Sixta, H.; Potthast, A.; Krotschek, A.W. Chemical pulping processes. In Handbook of Pulp; Sixta, H., Ed.; Wiley-VCH: Winheim, Germany, 2006.
[2]  Isroi, I.; Millati, R.; Syamsiah, S.; Niklasson, C.; Cahyanto, M.N.; Lundquist, K.; Taherezadeh, M.J. Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources 2011, 6, 5224–5259.
[3]  Pokhrel, D.; Viraraghavan, T. Treatment of pulp and paper mill wastewater –a review. Sci. Total Environ. 2004, 333, 37–58, doi:10.1016/j.scitotenv.2004.05.017.
[4]  Mu?oz, I.; Rieradevall, J.; Torrades, F.; Peral, J.; Domènech, X. Environmental assessment of different advanced oxidation processes applied to a bleaching Kraft mill effluent. Chemosphere 2006, 62, 9–16, doi:10.1016/j.chemosphere.2005.04.044.
[5]  Bajpai, P. Biological bleaching of chemical pulps. Crit. Rev. Biotechnol. 2004, 24, 1–58, doi:10.1080/07388550490465817.
[6]  Galliano, H.; Gas, G.; Seris, J.L.; Boudet, A.M. Lignin degradation by rigidoporus-lignosus involves synergistic action of 2-oxidizing enzymes- Mn peroxidase and laccase. Enzyme Microb. Technol. 1991, 13, 478–482, doi:10.1016/0141-0229(91)90005-U.
[7]  Hage, R.; Lienke, A. Applications of transition-metal catalysts to textile and wood-pulp bleaching. Angew. Chem. Int. Ed. 2006, 45, 206–222, doi:10.1002/anie.200500525.
[8]  Chen, C.-L.; Capanema, E.A.; Gracz, H.S. Reaction mechanisms in delignification of pine Kraft-AQ pulp with hydrogen peroxide using Mn(IV)-Me4DTNE as catalyst. J. Agric. Food Chem. 2003, 51, 1932–1941, doi:10.1021/jf020992n.
[9]  Biava, H.; Signorella, S. Peroxidase activity of dimanganese(III) complexes with the [Mn2(μ-OAc)(μ-OR)2]3+ core. Polyhedron 2010, 29, 1001–1006, doi:10.1016/j.poly.2009.12.004.
[10]  Dolphin, D.; Traylor, T.G.; Xie, L.Y. Polyhaloporphyrins: Unusual ligands for metals and metal-catalyzed oxidations. Acc. Chem. Res. 1997, 30, 251–259, doi:10.1021/ar960126u.
[11]  Crestini, C.; Pastorini, A.; Tagliatesta, P. Metalloporphyrins immobilized on motmorillonite as biomimetic catalysts in the oxidation of lignin model compounds. J. Mol. Catal. A 2004, 208, 195–202, doi:10.1016/j.molcata.2003.07.015.
[12]  Bermejo, M.R.; Fernández, M.I.; Gómez-Fórneas, E.; González-Noya, A.; Maneiro, M.; Pedrido, R.; Rodríguez, M.J. Self-assembly of dimeric Mn(III)-Schiff-base complexes tuned by perchlorate anions. Eur. J. Inorg. Chem. 2007, 2007, 3789–3797.
[13]  Vázquez-Fernández, M.A.; Bermejo, M.R.; Fernández-García, M.I.; González-Riopedre, G.; Rodríguez-Doutón, M.J.; Maneiro, M. Influence of the geometry around the manganese ion on the peroxidase and catalase activities of Mn(III)-Schiff base complexes. J. Inorg. Biochem. 2011, 105, 1538–1547, doi:10.1016/j.jinorgbio.2011.09.002.
[14]  Maneiro, M.; Bermejo, M.R.; Fernández, M.I.; Gómez-Fórneas, E.; González-Noya, A.M.; Tyryshkin, A.M. A new type of manganese-Schiff base complex, catalysts for the disproportionation of hydrogen peroxide as peroxidase mimics. New J. Chem. 2003, 27, 727–733.
[15]  Bermejo, M.R.; Fernández, M.I.; González-Noya, A.M.; Maneiro, M.; Pedrido, R.; Rodríguez, M.J.; García-Monteagudo, J.C.; Donnadieu, D. Novel peroxidase mimics: μ-Aqua manganese-Schiff base dimers. J. Inorg. Biochem. 2006, 100, 1470–1478, doi:10.1016/j.jinorgbio.2006.04.012.
[16]  Zucca, P.; Sollai, F.; Garau, A.; Rescigno, A.; Sanjust, E. Fe(III)-5,10,15,20-tetrakis(pentafluorophenyl)porphine supported on pyridyl-functionalized, crossliked poly(vinyl alcohol) as biomimetic versatile-peroxidase-like catalyst. J. Mol. Catal. A 2009, 306, 89–96, doi:10.1016/j.molcata.2009.02.029.
[17]  Bermejo, M.R.; Fondo, M.; Garcia-Deibe, A.; González-Noya, A.M.; Sousa, A.; Sanmartín, J.; McAuliffe, C.A.; Pritchard, R.G.; Watkinson, M.; Lukov, V. Studies of the binding modes of carboxylate donors with manganese(III) complexes containing tetradentate Schiff base ligands. Crystal structures of the complexes [Mn(3-CH3Osalpn)(HO2CC6H4CO2)]n and [{Mn(5-NO2salpn)(OH)(H2O)} [{Mn(5-NO2salpn)(HO2CC6H4CO2)(H2O)}·C2H5OH. Inorg. Chim. Acta 1999, 293, 210–217, doi:10.1016/S0020-1693(99)00260-1.
[18]  Kong, D.; Xie, Y. Synthesis, structural characterization of tetraazamacrocyclic ligand, five-coordinated zinc(II). Inorg. Chim. Acta 2002, 338, 142–148, doi:10.1016/S0020-1693(02)01025-3.
[19]  Majumder, A.; Pilet, G.; Garland, M.T.; Mitra, S. Synthesis and structural characterisation of three dicyanamide complexes with Mn(II), Zn(II) and Cd(II): Supramolecular architectures stabilised by hydrogen bonding. Polyhedron 2006, 25, 2550–2558, doi:10.1016/j.poly.2006.03.021.
[20]  Constable, E.C.; Housecroft, C.E.; Kopecky, P.; Schonhofer, E.; Zampese, J.A. Restricting the geometrical relaxation in four-coordinate copper(I) complexes using face-to-face and edge-to-face π-interactions. CrystEngComm 2011, 13, 2742–2752, doi:10.1039/c0ce00880j.
[21]  Eulering, B.; Schmidt, M.; Pinkernell, V.; Karst, U.; Krebs, B. An unsymmetrical dinuclear iron(III) complex with peroxidase properties. Angew. Chem. Int. Ed. 1996, 35, 1973–1974. (in English), doi:10.1002/anie.199619731.
[22]  Cozzi, P.G. Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem. Soc. Rev. 2004, 33, 410–421, doi:10.1039/b307853c.
[23]  Hage, R.; Lienke, A. Bleach and oxidation catalysis by manganese-1,4,7-triazacyclononane complexes and hydrogen peroxide. J. Mol. Catal. A 2006, 251, 150–158, doi:10.1016/j.molcata.2006.02.032.
[24]  Signorella, S.; Hureau, C. Bioinspired functional mimics of the manganese catalases. Coord. Chem. Rev. 2012, 256, 1229–1245, doi:10.1016/j.ccr.2012.02.003.
[25]  Oliveri, V.; Puglisi, A.; Vecchio, G. New conjugates of β-cyclodextrin with manganese(III) salophen and porphyrin complexes as antioxidant systems. Dalton Trans. 2011, 40, 2913–2919, doi:10.1039/c0dt01480j.
[26]  González-Riopedre, G.; Fernández-García, M.I.; González-Noya, A.M.; Vázquez-Fernández, M.; Bermejo, M.R.; Maneiro, M. Manganese-Schiff base complexes as catalysts for water photolysis. Phys. Chem. Chem. Phys. 2011, 13, 18069–18077.
[27]  Kervinen, K.; Lahtinen, P.; Repo, T.; Svanh, M.; Leskela, M. The effect of reaction conditions on the oxidation of veratryl alcohol catalyzed by cobalt salen-complexes. Catal. Today 2002, 75, 183–188.
[28]  Liu, A.; Huang, X.; Song, S.; Wang, D.; Xuemei, L.; Qu, Y.; Gao, P. Kinetics of the H2O2-dependent ligninase-catalyzed oxidation of veratryl alcohol in the presence of cationic surfactant studied by spectrophotometric technique. Spectrochim. Acta Part A 2003, 59, 2547–2551, doi:10.1016/S1386-1425(02)00444-4.
[29]  Simandi, L. Advances in Catalytic Activation of Dioxygen by Metal Complexes; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003.
[30]  Korpi, H.; Sippola, V.; Filpponen, I.; Sipil?, J.; Krausse, O.; Leskel?m, M.; Repo, R. Copper-2,2'-bipyridines: Catalytic performance and structures in aqueous alkaline solutions. Appl. Catal. A 2006, 302, 250–256, doi:10.1016/j.apcata.2006.01.020.
[31]  Zakzeski, J.; Jongerius, A.L.; Weckhuysen, B.M. Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chem. 2010, 12, 1225–1236, doi:10.1039/c001389g.
[32]  Crestini, C.; Pastorini, A.; Tagliatesta, P. The immobilized porphyrin-mediaton system Mn(TMePyP)/clay/HBT (clay-PMS): A Lignin peroxidase biomimetic catalyst in the oxidation of lignin and lignin model compounds. Eur. J. Inorg. Chem. 2004, 4477–4483.
[33]  Cui, F.; Dolphin, D. Iron porphyrin catalyzed oxidation of lignin model compounds: the oxidation of veratryl alcohol and veratryl acetate. Can. J. Chem. 1992, 70, 2314–2318, doi:10.1139/v92-292.
[34]  Sippola, V.O.; Krause, A.O.I. Bis(O-phenanthroline)copper-catalysed oxidation of lignin model compounds for oxygen bleaching of pulp. Catal. Today 2005, 100, 237–242, doi:10.1016/j.cattod.2004.09.058.
[35]  Sheldrick, G.M. SHELX-97 (shelxs 97 and shelxl 97), Programs for Crystal Structure Analyses, version 97-1; University of G?ttingen: G?ttingen, Germany, 1997.
[36]  Sheldrick, G.M. SADABS (Program for Scaling and Correction of Area Detector Data), version 2008/1; University of G?ttingen: G?ttingen, Germany, 2008.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133