全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Catalysts  2013 

Electron Transfer at Gold Nanostar Assemblies: A Study of Shape Stability and Surface Density Influence

DOI: 10.3390/catal3010288

Keywords: molecular electronics, gold nanostars, electron transfer, electrochemical charging

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gold nanostars of ~70 nm tip to tip distances were synthesized by a seed mediated method and covalently self-assembled on 1,5-pentanedithiol modified electrodes. Electron transfer kinetics at the AuNS/dithiol modified electrodes were studied as a function of AuNS surface density which was varied by increasing their self-assembly time from 8 h, 16 h, 24 h to 32 h. Excellent electrocatalytic properties of AuNSs were observed toward electrochemistry of [Fe(CN) 6] 4?/3? redox couple. The apparent heterogeneous electron transfer constant, k et, has progressively increased with the surface density of AuNSs bonded to the electrodes from 0.65 × 10 ?5 cm s ?1 (8 h), 1.47 × 10 ?5 cm s ?1 (16 h), 3.95 × 10 ?5 cm s ?1 (24 h) to an excellent 85.0 × 10 ?5 cm s ?1 (32 h). Electrochemical charging of nanostars was confirmed, for the first time, by 79 times increase of double layer capacitance, C dl, from 0.34 μF (8 h) to 27 μF (32 h). The electrochemical charging of AuNSs had also a strong influence on the electron tunneling process through the 1,5PDT molecules being more efficient at dense layers of AuNSs. The tunneling parameter, β, has decreased from 1.13 ? ?1 (16 h) to 0.50 ? ?1 (32 h). The AuNSs were chemically stable toward [Fe(CN) 6] 4?/3? showing no change in shape after electrochemical measurements.

References

[1]  Talapin, D.V.; Lee, J.-S.; Kovalenko, M.K.; Shevchenko, E.V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458, doi:10.1021/cr900137k.
[2]  Andres, R.P.; Bein, T.; Dorogi, M.; Feng, S.; Henderson, J.I.; Kubiak, C.P.; Mahoney, W.; Osifchin, R.G.; Reifenberger, R. Coulomb staircase at room temperature in a self-assembled molecular nanostructure. Science 1996, 272, 1323–1325.
[3]  Chirea, M.; Cruz, A.; Pereira, C.M.; Silva, A.F. Size-dependent electrochemical properties of gold nanorods. J. Phys. Chem. C 2009, 113, 13077–13087, doi:10.1021/jp9018712.
[4]  Chirea, M.; Borges, J.; Pereira, C.M.; Silva, A.F. Density-dependent electrochemical properties of vertically aligned gold nanorods. J. Phys. Chem. C 2010, 114, 9478–9488, doi:10.1021/jp912231s.
[5]  Shein, J.B.; Lai, L.M.H.; Eggers, P.K.; Paddon-Row, M.N.; Gooding, J.J. Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self-assembled monolayer modified electrodes. Langmuir 2009, 25, 11121–11128.
[6]  Gabriela, P.; Kissling, G.P.; Miles, D.O.; Fermín, D.J. Electrochemical charge transfer mediated by metal nanoparticles and quantum dots. Phys. Chem. Chem. Phys. 2011, 13, 21175–21185.
[7]  Ashur, I.; Schulz, O.; McIntosh, C.L.; Pinkas, I.; Ros, R.; Jones, A.K. Transparent gold as a platform for adsorbed Protein Spectroelectrochemistry: Investigation of cytocrom c and azurin. Langmuir 2012, 28, 5861–5871.
[8]  De Boer, B.; Frank, M.M.; Chabal, Y.J.; Jiang, W.; Eric Garfunkel, E.; Bao, Z. Metallic contact formation for molecular electronics: interactions between vapor-deposited metals and self-assembled monolayers of Conjugated mono- and dithiols. Langmuir 2004, 20, 1539–1542.
[9]  Qu, D.; Kim, B.-C.; Lee, C.-W.J.; Ito, M.; Noguchi, H.; Uosaki, K. 1,6-Hexanedithiol self-assembled monolayers on Au(111) investigated by electrochemical, spectroscopic, and molecular mechanics methods. J. Phys. Chem. C 2010, 114, 497–505.
[10]  Akkerman, H.B.; Kronemeijer, A.J.; van Hal, P.A.; de Leeuw, D.M.; Blom, P.W.M.; de Boer, B. Self-assembled-monolayer formation of long alkanedithiols in molecular junctions. Small 2008, 4, 100–104, doi:10.1002/smll.200700623.
[11]  Chah, S.; Fendler, J.H.; Yi, J. In-situ analysis of step-wise self-assembled 1,6Hexanedithiol multilayers by surface plasmon resonance measurements. Chem. Commun. 2002, 2094–2095, doi:10.1039/B206817F.
[12]  Reed, M.A.; Zhou, C.; Muller, C.J.; Burgin, T.P.; Tour, J.M. Conductance of a molecular junction. Science 1997, 278, 252–254, doi:10.1126/science.278.5336.252.
[13]  Cui, X.D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O.F.; Moore, A.L.; Moore, T.A.; Gust, D.; Harris, G.; Lindsay, S.M. Reproducible measurements of single molecule conductivity. Science 2001, 294, 571–574, doi:10.1126/science.1064354.
[14]  Yang, Y.-C.; Lee, Y.-L.; Yang, L.-Y.O.; Yau, S.-Y. In situ scanning tunneling microscopy of 1,6-hexanedithiol, 1,9-nonanedithiol, 1,2-benzenedithiol, and 1,3-benzenedithiol adsorbed on Pt(111) electrodes. Langmuir 2006, 22, 5189–5195, doi:10.1021/la0529815.
[15]  Niskala, J.R.; Rice, W.C.; Bruce, R.C.; Merkel, T.J.; Tsui, F.; You, W. Tunneling characteristics of Au-alkanedithiol-Au junctions formed via nanotransfer printing (nTP). J. Am. Chem. Soc. 2012, 134, 12072–12082.
[16]  Lu, M.; Li, X.H.; Yu, B.Z.; Li, H.L. Electrochemical behavior of Au colloidal electrode through layer-by-layer self-assembly. J. Colloid Interface Sci. 2002, 248, 376–382, doi:10.1006/jcis.2002.8238.
[17]  Qu, D.; Uosaki, K. Electrochemical metal deposition on top of an organic monolayer. J. Phys. Chem. B 2006, 110, 17570–17577, doi:10.1021/jp0632135.
[18]  Barbosa, S.; Agrawal, A.; Rodríguez-Lorenzo, L.; Pastoriza-Santos, I.; Alvarez-Puebla, A.R.; Kornowski, A.; Weller, H.; Liz-Marzán, L.-L. Tuning size and sensing properties in colloidal gold nanostars. Langmuir 2010, 26, 14943–14950, doi:10.1021/la102559e.
[19]  Khoury, C.G.; Vo-Dinh, T. Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J. Phys. Chem. C 2008, 112, 18849–18859.
[20]  Kumar, P.S.; Pastoriza-Santos, I.; Rodríguez-González, B.; de Abajo, F.J.G.; Liz-Marzán, L.M. High-yield synthesis and optical response of gold nanostars. Nanothechnology 2008, 19, 015606, doi:10.1088/0957-4484/19/01/015606.
[21]  Rodríguez-Lorenzo, L.; Alvarez-Puebla, R.A.; Pastoriza-Santos, I.; Mazzucco, S.; Stéphan, O.; Kociak, M.; Liz-Marzán, L.M.; de Abajo, F.J.G. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J. Am. Chem. Soc. 2009, 131, 4616–4618, doi:10.1021/ja809418t.
[22]  Rodríguez-Lorenzo, L.; Alvarez-Puebla, R.A.; de Abajo, F.J.G.; Liz-Marzan, L.L. Surface enhanced Raman scattering using star-shaped gold colloidal nanoparticles. J. Phys. Chem. C 2010, 114, 7336–7340.
[23]  Shao, L.; Susha, A.S.; Cheung, L.S.; Sau, T.K.; Rogach, A.L.; Wang, J. Plasmonic properties of single multispiked gold nanostars: Correlating modeling with experiments. Langmuir 2012, 28, 8979–8984.
[24]  Dondapati, S.K.; Sau, T.K.; Hrelescu, C.; Klar, T.A.; Stefani, F.D.; Feldmann, J. Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano 2010, 4, 6318–6322, doi:10.1021/nn100760f.
[25]  Monzo, J.; Kopper, M.T.M.; Rodriguez, P. Removing polyvinylpyrrolidone from catalytic Pt nanoparticles withouth modification of superficial order. Chem. Phys. Chem. 2012, 13, 709–715.
[26]  Chirea, M.; Garcia-Morales, V.; Manzanares, J.A.; Pereira, C.; Gulaboski, R.; Silva, F. Electrochemical characterization of polyelectrolyte/gold nanoparticle multilayers self-assembled on gold electrodes. J. Phys. Chem. B 2005, 109, 21808–21817.
[27]  Chirea, M.; Pereira, C.; Silva, F. Catalytic effect of gold nanoparticles self-assembled in multilayered polyelectrolyte films. J. Phys. Chem. C 2007, 111, 9255–9266, doi:10.1021/jp071067c.
[28]  Diao, P.; Liu, Z. Electrochemistry at chemically assembled single-wall carbon nanotube arrays. J. Phys. Chem. B 2005, 109, 20906–20913, doi:10.1021/jp052666r.
[29]  Diao, P.; Guo, M.; Zhang, Q. How does the particle density affect the electrochemical behaviour of gold nanoparticle assembly? J. Phys. Chem. C 2008, 112, 7036–7046, doi:10.1021/jp077653n.
[30]  Finklea, H.O.; Hanshew, D.D. Electron-transfer kinetics in organized thiol monolayers with attached pentaammine(pyridine)ruthenium redox centers. J. Am. Chem. Soc. 1992, 114, 3173–3181, doi:10.1021/ja00035a001.
[31]  Chirea, M.; Pereira, C.; Silva, F. Shape dependence of electron transfer kinetics at nanometer sized films. Lett. Appl. Nano Biosci. 2012, 1, 56–62.
[32]  Rodriguez-Lorenzo, L.; Romo-Herrera, J.M.; Perez-Juste, J.; Alvarez-Puebla, R.A.; Liz-Marzan, L.M. Reshaping and LSPR tuning of Au nanostars in the presence of CTAB. J. Mater. Chem. 2011, 21, 11544–11549.
[33]  Zou, R.; Zhang, Q.; Zhao, Q.; Peng, F.; Wang, H.; Yu, H.; Yang, J. Thermal stability of gold nanorods in an aqueous solution. Colloids Surf. A 2010, 372, 177–181.
[34]  Zhang, L.; Holt, C.M.B.; Luber, E.J.; Olsen, B.C.; Wang, H.; Danaie, M.; Cui, X.; Tan, X.; Lui, W.V.; Kalisvaart, W.P.; et al. High rate electrochemical capacitors from three-dimensional arrays of vanadium nitride functionalized carbon nanotubes. J. Phys. Chem. C 2011, 115, 24381–24393, doi:10.1021/jp205052f.
[35]  K?tza, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 2000, 45, 2483–2498, doi:10.1016/S0013-4686(00)00354-6.
[36]  Graf, C.; Vossen, L.J.; Imhof, A.; van Blaaderen, A. A general method to coat colloidal particles with silica. Langmuir 2003, 19, 6693–6700, doi:10.1021/la0347859.
[37]  Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75, doi:10.1039/df9511100055.
[38]  Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 1973, 241, 20–22.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133