Several important enzymatic reactions occurring in nature, such as, e.g., the digestion of fat, proceed only at the interface of two immiscible phases. Typically, these systems consist of an organic substrate, dispersed in an aqueous continuous phase, with a specialized enzyme capable of working at the interface. For adopting such a system for organic synthesis, a stable heterophase system with a large interfacial area is required. These prerequisites can be found in so-called miniemulsions. Such liquid-liquid heterophase systems feature droplets with sizes smaller than 500 nm, and more importantly, these emulsions do not suffer from Ostwald ripening, as conventional emulsions do. Consequently, the droplets show long-term stability, even throughout reactions conducted in the droplets. In this review, we will briefly discuss the physicochemical background of miniemulsions, provide a comprehensive overview of the enzymatically catalyzed reactions conducted in miniemulsions and, as data are available, to compare the most important features to conventional systems, as reverse microemulsions, (macro)emulsions and solvent-based systems.
References
[1]
Beloqui, A.; de María, P.D.; Golyshin, P.N.; Ferrer, M. Recent trends in industrial microbiology. Curr. Opin. Microbiol. 2008, 11, 240–248, doi:10.1016/j.mib.2008.04.005.
[2]
Nestl, B.M.; Nebel, B.A.; Hauer, B. Recent progress in industrial biocatalysis. Curr. Opin. Chem. Biol. 2011, 15, 187–193, doi:10.1016/j.cbpa.2010.11.019.
[3]
Clouthier, C.M.; Pelletier, J.N. Expanding the organic toolbox: A guide to integrating biocatalysis in synthesis. Chem. Soc. Rev. 2012, 41, 1585–1605, doi:10.1039/c2cs15286j.
[4]
Bornscheuer, U.T.; Huisman, G.W.; Kazlauskas, R.J.; Lutz, S.; Moore, J.C.; Robins, K. Engineering the third wave of biocatalysis. Nature 2012, 485, 185–194.
Simon, M.-O.; Li, C.-J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev. 2012, 41, 1415–1427, doi:10.1039/c1cs15222j.
[7]
Landfester, K. Synthesis of colloidal particles in miniemulsions. Annu. Rev. Mater. Res. 2006, 36, 231–279, doi:10.1146/annurev.matsci.36.032905.091025.
[8]
Landfester, K. Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew. Chem. Int. Ed. 2009, 48, 4488–4507, doi:10.1002/anie.200900723.
Weiss, C.K.; Landfester, K. Miniemulsion Polymerization as a Means to Encapsulate Organic and Inorganic Materials. Adv. Polym. Sci. 2010, 233, 185–236, doi:10.1007/12_2010_61.
[11]
Munoz-Espi, R.; Weiss, C.K.; Landfester, K. Inorganic nanoparticles prepared in miniemulsion. Curr. Opin. Colloid Interface Sci. 2012, 17, 212–224, doi:10.1016/j.cocis.2012.04.002.
[12]
Holmberg, K. Organic and bioorganic reactions in microemulsions. Adv. Colloid Interface Sci. 1994, 51, 137–174, doi:10.1016/0001-8686(94)80035-9.
Kohri, M.; Kobayashi, A.; Fukushima, H.; Kojima, T.; Taniguchi, T.; Saito, K.; Nakahira, T. Enzymatic miniemulsion polymerization of styrene with a polymerizable surfactant. Polym. Chem. 2012, 3, 900–906, doi:10.1039/c2py00542e.
[18]
Kohri, M.; Kobayashi, A.; Fukushima, H.; Taniguchi, T.; Nakahira, T. Effect of surfactant type on enzymatic miniemulsion polymerization using horseradish peroxidase as a catalyst. Chem. Lett. 2012, 41, 1131–1133.
[19]
Bechthold, N.; Landfester, K. Kinetics of miniemulsion polymerization as revealed by calorimetry. Macromolecules 2000, 33, 4682–4689, doi:10.1021/ma000061h.
[20]
Reis, P.; Holmberg, K.; Watzke, H.; Leser, M.E.; Miller, R. Lipases at interfaces: A review. Adv. Colloid Interface Sci. 2009, 147–148, 237–250.
[21]
Rogalska, E.; Cudrey, C.; Ferrato, F.; Verger, R. Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality 1993, 5, 24–30, doi:10.1002/chir.530050106.
[22]
Schmid, R.D.; Verger, R. Lipases: Interfacial enzymes with attractive applications. Angew. Chem. Int. Ed. 1998, 37, 1609–1633.
Okumura, S.; Iwai, M.; Tsujisaka, Y. Synthesis of various kinds of esters by 4 microbial lipases. Biochim. Biophys. Acta 1979, 575, 156–165, doi:10.1016/0005-2760(79)90141-3.
[25]
Eggers, D.K.; Blanch, H.W.; Prausnitz, J.M. Extractive catalysis: Solvent effects on equilibria of enzymatic reactions in two-phase systems. Enzyme Microb. Technol. 1989, 11, 84–89, doi:10.1016/0141-0229(89)90065-3.
Castro, G.R.; Knubovets, T. Homogeneous biocatalysis in organic solvents and water-organic mixtures. Crit. Rev. Biotechnol. 2003, 23, 195–231.
[28]
Biasutti, M.A.; Abuin, E.B.; Silber, J.J.; Correa, N.M.; Lissi, E.A. Kinetics of reactions catalyzed by enzymes in solutions of surfactants. Adv. Colloid Interface Sci. 2008, 136, 1–24, doi:10.1016/j.cis.2007.07.001.
[29]
Monot, F.; Borzeix, F.; Bardin, M.; Vandecasteele, J.-P. Enzymatic esterification in organic media: Role of water and organic solvent in kinetics and yield of butyl butyrate synthesis. Appl Microb. Biotechnol. 1991, 35, 759–765.
[30]
Carvalho, C.M.L.; Aires-Barros, M.R.; Cabral, J.M.S. Cutinase: From molecular level to bioprocess development. Biotechnol. Bioeng. 1999, 66, 17–34.
[31]
Rona, P.; Ammon, R. Tests on enzymatic ester-hydrolysis and ester-synthesis. Biochem. Z. 1932, 249, 446–454.
[32]
Sym, E.A. On the esterase-effect. III. Biochem. Z. 1933, 258, 304–324.
[33]
de Lima, A.P.D.; Aschenbrenner, E.M.; Oliveira, S.; Doucet, J.-B.; Weiss, C.K.; Ziener, U.; Fonseca, L.P.; Ricardo, N.M.P.S.; de Freitas, L.L.; Petzhold, C.L.; et al. Towards regioselective enzymatic hydrolysis and glycerolysis of tricaprylin in miniemulsion and the direct preparation of polyurethane from the hydrolysis products. J. Mol. Catal.. to be submitted for publication 2013.
[34]
Aschenbrenner, E.M.; Weiss, C.K.; Landfester, K. Enzymatic esterification in aqueous miniemulsions. Chem. Eur. J. 2009, 15, 2434–2444, doi:10.1002/chem.200801691.
[35]
de Barros, D.P.C.; Fernandes, P.; Cabral, J.M.S.; Fonseca, L.P. Synthetic application and activity of cutinase in an aqueous, miniemulsion model system: Hexyl octanoate synthesis. Catal. Today 2011, 173, 95–102.
[36]
de Barros, D.P.C.; Fonseca, L.P.; Cabral, J.M.S.; Aschenbrenner, E.M.; Weiss, C.K.; Landfester, K. Miniemulsion as efficient system for enzymatic synthesis of acid alkyl esters. Biotechnol. Bioeng. 2010, 106, 507–515, doi:10.1002/bit.22726.
[37]
de Barros, D.P.C.; Fonseca, L.P.; Cabral, J.M.S.; Weiss, C.K.; Landfester, K. Synthesis of alkyl esters by cutinase in miniemulsion and organic solvent media. Biotechnol. J. 2009, 4, 674–683, doi:10.1002/biot.200800294.
[38]
M?lberg, S.; Finne-Wistrand, A.; Albertsson, A.-C. The environmental influence in enzymatic polymerization of aliphatic polyesters in bulk and aqueous mini-emulsion. Polymer 2010, 51, 5318–5322, doi:10.1016/j.polymer.2010.09.016.
[39]
Taden, A.; Antonietti, M.; Landfester, K. Enzymatic polymerization towards biodegradable polyester nanoparticles. Macromol. Rapid Commun. 2003, 24, 512–516, doi:10.1002/marc.200390079.
[40]
Groger, H.; May, O.; Husken, H.; Georgeon, S.; Drauz, K.; Landfester, K. Enantioselective enzymatic reactions in miniemulsions as efficient “nanoreactors”. Angew. Chem. Int. Ed. 2006, 45, 1645–1648, doi:10.1002/anie.200502854.
[41]
Baile, M.; Chou, Y.J.; Saam, J.C. Direct polyesterification in aqueous emulsion. Polym. Bull. 1990, 23, 251–257, doi:10.1007/BF01032438.
[42]
Kobayashi, S.; Uyama, H.; Suda, S.; Namekawa, S. Dehydration polymerization in aqueous medium catalyzed by lipase. Chem. Lett. 1997, 26, doi:10.1246/cl.1997.105.
[43]
Suda, S.; Uyama, H.; Kobayashi, S. Dehydration polycondensation in water for synthesis of polyesters by lipase catalyst. Proc. Jpn. Acad. Ser. B 1999, 75, 201–206, doi:10.2183/pjab.75.201.
[44]
Manabe, K.; Iimura, S.; Sun, X.M.; Kobayashi, S. Dehydration reactions in water. Bronsted acid-surfactant-combined catalyst for ester, ether, thioether, and dithioacetal formation in water. J. Am. Chem. Soc. 2002, 124, 11971–11978.
[45]
Manabe, K.; Sun, X.M.; Kobayashi, S. Dehydration reactions in water. Surfactant-type bronsted acid-catalyzed direct esterification of carboxylic acids with alcohols in an emulsion system. J. Am. Chem. Soc. 2001, 123, 10101–10102, doi:10.1021/ja016338q.
[46]
De Barros, D.P.C.; Fonseca, L.P.; Cabral, J.M.S.; Weiss, C.K.; Landfester, K. Biosynthesis of fatty acids alkyl esters in miniemulsion as a reaction media. New Biotechnol. 2009, 25, S116.
[47]
de Barros, D.P.C.; Fernandes, P.; Cabral, J.M.S.; Fonseca, L.P. Operational stability of cutinase in organic solvent system: Model esterification of alkyl esters. J. Chem. Technol. Biotechnol. 2010, 85, 1553–1560, doi:10.1002/jctb.2464.
[48]
De Barros, D.P.C.; Azevedo, A.M.; Cabral, J.M.S.; Fonseca, L.P. Optimization of flavor esters synthesis by fusarium solani pisi cutinase. J. Food Biochem. 2012, 36, 275–284.
[49]
de Barros, D.P.C.; Fonseca, L.P.; Fernandes, P.; Cabral, J.M.S.; Mojovic, L. Biosynthesis of ethyl caproate and other short ethyl esters catalyzed by cutinase in organic solvent. J. Mol. Catal. B 2009, 60, 178–185, doi:10.1016/j.molcatb.2009.05.004.
[50]
Cunnah, P.J.; Aires-Barros, M.R.; Cabral, J.M.S. Esterification and transesterification catalysed by cutinase in reverse micelles of ctab for the synthesis of short chain esters. Biocatal. Biotransform. 1996, 14, 125–146, doi:10.3109/10242429609106881.
[51]
Pinto-Sousa, A.M.C.; Cabral, J.M.S.; Aires-Barros, M.R. Ester Synthesis by a recombinant cutinase in reversed micelles of a natural phospholipid. Biocatal. Biotransform. 1994, 9, 169–179, doi:10.3109/10242429408992118.
[52]
Gotor, V. Non-conventional hydrolase chemistry: Amide and carbamate bond formation catalyzed by lipases. Biorg. Med. Chem. 1999, 7, 2189–2197, doi:10.1016/S0968-0896(99)00150-9.
[53]
Gotor-Fernández, V.; Busto, E.; Gotor, V. Candida antarctica lipase b: An ideal biocatalyst for the preparation of nitrogenated organic compounds. Adv. Synth. Catal. 2006, 348, 797–812, doi:10.1002/adsc.200606057.
[54]
Ragupathy, L.; Pluhar, B.; Ziener, U.; Keller, H.; Dyllick-Brenzinger, R.; Landfester, K. Enzymatic aminolysis of lactones in aqueous miniemulsion: Catalysis through a novel pathway. J. Mol. Catal. B 2010, 62, 270–276, doi:10.1016/j.molcatb.2009.11.006.
[55]
Gross, R.A.; Ganesh, M.; Lu, W. Enzyme-catalysis breathes new life into polyester condensation polymerizations. Trends Biotechnol. 2010, 28, 435–443, doi:10.1016/j.tibtech.2010.05.004.
[56]
Kobayashi, S. Recent developments in lipase-catalyzed synthesis of polyesters. Macromol. Rapid Commun. 2009, 30, 237–266, doi:10.1002/marc.200800690.
[57]
Kobayashi, S.; Makino, A. Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem. Rev. 2009, 109, 5288–5353, doi:10.1021/cr900165z.
Namekawa, S.; Uyama, H.; Kobayashi, S. Lipase-catalyzed ring-opening polymerization of lactones in water. Polym. J. 1998, 30, 269–271, doi:10.1295/polymj.30.269.
[60]
Nallani, M.; de Hoog, H.-P.M.; Cornelissen, J.J.L.M.; Palmans, A.R.A.; van Hest, J.C.M.; Nolte, R.J.M. Polymersome nanoreactors for enzymatic ring-opening polymerization. Biomacromolecules 2007, 8, 3723–3728, doi:10.1021/bm7005938.
[61]
Panlawan, P.; Luangthongkam, P.; Wiemann, L.O.; Sieber, V.; Marie, E.; Durand, A.; Inprakhon, P. Lipase-catalyzed interfacial polymerization of ω-pentadecalactone in aqueous biphasic medium: A mechanistic study. J. Mol. Catal. B 2013, 88, 69–76, doi:10.1016/j.molcatb.2012.11.008.
[62]
Gardella, J.A.; Novak, F.P.; Hercules, D.M. Static secondary ion mass-spectrometry for study of surface hydrolysis of poly(tert-butyl methacrylate). Anal. Chem. 1984, 56, 1371–1375, doi:10.1021/ac00272a037.
[63]
O’Sullivan, C.; Birkinshaw, C. Hydrolysis of poly (n-butylcyanoacrylate) nanoparticles using esterase. Polym. Degrad. Stable 2002, 78, 7–15, doi:10.1016/S0141-3910(02)00113-1.
[64]
Sullivan, C.O.; Birkinshaw, C. In vitro degradation of insulin-loaded poly (n-butylcyanoacrylate) nanoparticles. Biomaterials 2004, 25, 4375–4382, doi:10.1016/j.biomaterials.2003.11.001.
[65]
Vauthier, C.; Dubernet, C.; Fattal, E.; Pinto-Alphandary, H.; Couvreur, P. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv. Drug Deliv. Rev. 2003, 55, 519–548, doi:10.1016/S0169-409X(03)00041-3.
[66]
Klinger, D.; Aschenbrenner, E.M.; Weiss, C.K.; Landfester, K. Enzymatically degradable nanogels by inverse miniemulsion copolymerization of acrylamide with dextran methacrylates as crosslinkers. Polym. Chem. 2012, 3, 204–216, doi:10.1039/c1py00415h.
[67]
Klinger, D.; Landfester, K. Enzymatic- and light-degradable hybrid nanogels: Crosslinking of polyacrylamide with acrylate-functionalized dextrans containing photocleavable linkers. J. Polym. Sci. Part A 2012, 50, 1062–1075, doi:10.1002/pola.25845.
[68]
Andrieu, J.; Kotman, N.; Maier, M.; Mailander, V.; Strauss, W.S.L.; Weiss, C.K.; Landfester, K. Live monitoring of cargo release from peptide-based hybrid nanocapsules induced by enzyme cleavage. Macromol. Rapid Commun. 2012, 33, 248–253, doi:10.1002/marc.201100729.
[69]
Maier, M.; Kotman, N.; Friedrichs, C.; Andrieu, J.; Wagner, M.; Graf, R.; Strauss, W.S.L.; Mailander, V.; Weiss, C.K.; Landfester, K. Highly site specific, protease cleavable, hydrophobic peptide-polymer nanoparticles. Macromolecules 2011, 44, 6258–6267, doi:10.1021/ma201149b.