全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Catalysts  2013 

Coating SiO2 Support with TiO2 or ZrO2 and Effects on Structure and CO Oxidation Performance of Pt Catalysts

DOI: 10.3390/catal3010088

Keywords: platinum, SiO2, TiO2, ZrO2, surface coating, sulfur tolerance, hydrothermal stability, CO oxidation, diesel oxidation catalysts

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work, we studied how TiO2 and ZrO2 coatings enhance the CO oxidation performance of SiO2-supported Pt catalysts under conditions relevant to automotive emissions control. SiO2 was coated with metal oxides TiO2 or ZrO2 by sol-gel method and the subsequent Pt loading was done by incipient wetness method. The prepared catalysts Pt/TiO2-SiO2 and Pt/ZrO2-SiO2 were compared with Pt/SiO2 and Pt/Al2O3 in fresh, sulfated, and hydrothermally aged states. The structure of the catalysts was characterized with BET, XRD, TEM, EDS, EXAFS, XANES, TPD and TPR to help interpret the CO oxidation performance. Higher dispersion, stability, and oxidation state of Pt were achieved on TiO2-SiO2 and ZrO2-SiO2 supports due to stronger metal-support interaction leading to superior CO oxidation performance compared to Pt/SiO2 and Pt/Al2O3. TiO2 and ZrO2 coatings introduced surface acidity but negligible basicity, which is a likely reason for the weak and low adsorption of SO2. The results suggest that the sol-gel coating of SiO2 with metal oxides could be an attractive strategy for designing automotive oxidation catalysts with enhanced performance such as low-temperature activity, sulfur tolerance, and hydrothermal stability.

References

[1]  Hauff, K.; Tuttlies, U.; Eigenberger, G.; Nieken, U. A global description of DOC kinetics for catalysts with different platinum loadings and aging status. Appl. Catal. B 2010, 100, 10–18, doi:10.1016/j.apcatb.2010.07.036.
[2]  Kr?cher, O.; Widmer, M.; Elsener, M.; Rothe, D. Adsorption and desorption of SOx on diesel oxidation catalysts. Ind. Eng. Chem. Res. 2009, 48, 9847–9857, doi:10.1021/ie900882p.
[3]  Wu, X.; Liu, S.; Weng, D. Effects of tungsten oxide on soot oxidation activity and sulfur poisoning resistance of Pt/Al2O3 catalyst. Catal. Sci. Technol. 2011, 1, 644–651, doi:10.1039/c1cy00071c.
[4]  Cabello Galisteo, F.; Mariscal, R.; López Granados, M.; Fierro, J.L.G.; Daley, R.A.; Anderson, J.A. Reactivation of sintered Pt/Al2O3 oxidation catalysts. Appl. Catal. B 2005, 59, 227–233, doi:10.1016/j.apcatb.2005.02.004.
[5]  Luo, J.-Y.; Kisinger, D.; Abedi, A.; Epling, W.S. Sulfur release from a model Pt/Al2O3 diesel oxidation catalyst: Temperature-programmed and step-response techniques characterization. Appl. Catal. A 2010, 383, 182–191.
[6]  Dhakad, M.; Fino, D.; Rayalu, S.S.; Kumar, R.; Watanabe, A.; Haneda, H.; Devotta, S.; Mitsuhashi, T.; Labhsetwar, N. Zirconia supported Ru-Co bimetallic catalysts for diesel soot oxidation. Top. Catal. 2007, 42–43, 273–276.
[7]  Kaneeda, M.; Iizuka, H.; Hiratsuka, T.; Shinotsuka, N.; Arai, M. Improvement of thermal stability of NO oxidation Pt/Al2O3 catalyst by addition of Pd. Appl. Catal. B 2009, 90, 564–569, doi:10.1016/j.apcatb.2009.04.011.
[8]  Kim, C.H.; Schmid, M.; Schmieg, S.J.; Tan, J.; Li, W. The effect of Pt-Pd ratio on oxidation catalysts under simulated diesel exhaust. SAE Tech. Pap. 2011, 2011-01-1134.
[9]  Oi-Uchisawa, J.; Obuchi, A.; Enomoto, R.; Liu, S.; Nanba, T.; Kushiyama, S. Catalytic performance of Pt supported on various metal oxides in the oxidation of carbon black. Appl. Catal. B 2000, 26, 17–24.
[10]  Matsumoto, S.; Ikeda, Y.; Suzuki, H.; Ogai, M.; Miyoshi, N. NOx storage-reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning. Appl. Catal. B 2000, 25, 115–124.
[11]  Beutel, T.W.; Dettling, J.C.; Hollobaugh, D.O.; Mueller-Stach, T.W. Pt-Pd diesel oxidation catalyst with CO/HC light-off and HC storage function. U.S. Patent 7 875 573, 25 January 2011.
[12]  Kim, M.-Y.; Jung, S.B.; Kim, M.K.; You, Y.S.; Park, J.-H.; Shin, C.-H.; Seo, G. Preparation of highly dispersive and stable platinum catalysts supported on siliceous SBA-15 mesoporous material: Roles of titania layer incorporation and hydrogen peroxide treatment. Catal. Lett. 2009, 129, 194–206.
[13]  Kim, M.-Y.; Park, J.-H.; Shin, C.-H.; Han, S.-W.; Seo, G. Dispersion improvement of platinum catalysts supported on silica, silica-alumina and alumina by titania incorporation and pH adjustment. Catal. Lett. 2009, 133, 288–297, doi:10.1007/s10562-009-0188-4.
[14]  Kim, M.-Y.; Park, S.M.; Seo, G.; Song, K.-S. Highly stable platinum catalysts in propane combustion prepared by supporting platinum on zirconia-incorporated silica. Catal. Lett. 2010, 138, 205–214.
[15]  Kim, M.-Y.; Park, S.M.; Park, J.-H.; Shin, C.-H.; Moon, W.-J.; Sung, N.-E.; Seo, G. Platinum catalysts supported on silicas: Effect of silica characteristics on their catalytic activity in carbon monoxide oxidation. Reac. Kinet. Mech. Catal. 2011, 103, 463–479, doi:10.1007/s11144-011-0324-1.
[16]  Newville, M. IFEFFIT: Interactive XAFS analysis and FEFF fitting. J. Synchrotron Rad. 2001, 8, 322–324, doi:10.1107/S0909049500016964.
[17]  Ankudinov, A.L.; Ravel, B.; Rehr, J.J.; Conradson, S.D. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 1998, 58, 7565–7576.
[18]  Jentys, A. Estimation of mean size and shape of small metal particles by EXAFS. Phys. Chem. Chem. Phys. 1999, 1, 4059–4063, doi:10.1039/a904654b.
[19]  De Graaf, J.; van Dillen, A.J.; de Jong, K.P.; Koningsberger, D.C. Preparation of highly dispersed Pt particles in zeolite Y with a narrow particle size distribution: Characterization by hydrogen chemisorption, TEM, EXAFS spectroscopy, and particle modeling. J. Catal. 2001, 203, 307–321.
[20]  Lamber, R.; Romanowski, W. Dispersion changes of platinum supported on silica glass during thermal treatment in oxygen and hydrogen atmospheres. J. Catal. 1987, 105, 213–226.
[21]  Kamiuchi, N.; Taguchi, K.; Matsui, T.; Kikuchi, R.; Eguchi, K. Sintering and redispersion of platinum catalysts supported on tin oxide. Appl. Catal. B 2009, 89, 65–72.
[22]  Wang, T.; Schmidt, L.D. Intraparticle redispersion of Rh and Pt-Rh particles on SiO2 and Al2O3 by oxidation-reduction cycling. J. Catal. 1981, 70, 187–197.
[23]  Rickard, J.M.; Genovese, L.; Moata, A.; Nitsche, S. Redispersion of platinum on Pt/Al2O3 model catalyst in oxygen studied by transmission electron microscopy. J. Catal. 1990, 121, 141–152.
[24]  Straguzzi, G.I.; Aduriz, H.R.; Gigola, C.E. Redispersion of platinum on alumina support. J. Catal. 1980, 66, 171–183.
[25]  Oudenhuijzen, M.K.; Bitter, J.H.; Koningsberger, D.C. The nature of the Pt-H bonding for strongly and weakly bonded hydrogen on platinum. A XAFS spectroscopy study of the Pt-H antibonding shaperesonance and Pt-H EXAFS. J. Phys. Chem. B 2001, 105, 4616–4622, doi:10.1021/jp0108014.
[26]  Tang, Y.; Zhang, L.; Wang, Y.; Zhou, Y.; Gao, Y.; Liu, C.; Xing, W.; Lu, T. Preparation of a carbon supported Pt catalyst using an improved organic sol method and its electrocatalytic activity for methanol oxidation. J. Power Sources 2006, 162, 124–131.
[27]  Douidah, A.; Marécot, P.; Szabo, S.; Barbier, J. Evaluation of the metal–support interactions Case of platinum-supported catalysts: Effect of the support nature and the metallic dispersion. Appl. Catal. A 2002, 225, 21–31, doi:10.1016/S0926-860X(01)00627-5.
[28]  Nagai, Y.; Hirabayashi, T.; Dohmae, K.; Takagi, N.; Minami, T.; Shinjoh, H.; Matsumoto, S. Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide-support interaction. J. Catal. 2006, 242, 103–109.
[29]  Cuenya, B.R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films 2010, 518, 3127–3150, doi:10.1016/j.tsf.2010.01.018.
[30]  Kageyama, S.; Seino, S.; Nakagawa, T.; Nitani, H.; Ueno, K.; Daimon, H.; Yamamoto, T.A. Formation of PtRu alloy nanoparticle catalyst by radiolytic process assisted by addition of DL-tartaric acid and its enhanced methanol oxidation activity. J. Nanopart. Res. 2011, 13, 5275–5287.
[31]  Yoo, S.J.; Lee, K.-S.; Cho, Y.-H.; Kim, S.-K.; Lim, T.-H.; Sung, Y.-E. Electrocatalytic properties of TiO2-embedded Pt nanoparticles in oxidation of methanol: Particle size effect and proton spillover effect. Electrocatalysis 2011, 2, 297–306.
[32]  Yan, W.; Li, Z.; Wei, Z.; Wei, S. Pd-Pt catalysts on fluorinated alumina support studied by X-ray absorption fine structure. In Proceedings of AIP (American Institute of Physics) Conference, Stanford, CA, USA, 9–14 July 2006; 882, pp. 711–713.
[33]  Miller, J.T.; Koningsberger, D.C. The origin of sulfur tolerance in supported platinum catalysts: The relationship between structural and catalytic properties in acidic and alkaline Pt/LTL. J. Catal. 1996, 162, 209–219.
[34]  Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H. New solid acids and bases: Their catalytic properties. Stud. Surf. Sci. Catal. 1989, 51, 109–113.
[35]  Campbell, C.T.; Ertl, G.; Kuipers, H.; Segner, J. A molecular-beam study of the catalytic-oxidation of CO on a Pt(111) surface. J. Chem. Phys. 1980, 73, 5862–5873.
[36]  B?r, M.; Zülicke, C.; Eiswirth, M.; Ertl, G. Theoretical modeling of spatiotemporal self-organization in a surface catalyzed reaction exhibiting bistable kinetics. J. Chem. Phys. 1992, 96, 8595–8604, doi:10.1063/1.462312.
[37]  Vannice, M.A.; Hasselbring, L.C.; Sen, B. Direct measurements of heats of adsorption on platinum catalysts. II. CO on Pt dispersed on SiO2, A12O3, SiO2-A12O3, and TiO2. J. Catal. 1986, 97, 66–74.
[38]  Bakhmutsky, K.; Wieder, N.L.; Cargnello, M.; Galloway, B.; Fornasiero, P.; Gorte, R.J. versatile route to core-shell catalysts: Synthesis of dispersible M@Oxide (M=Pd, Pt; Oxide=TiO2, ZrO2) nanostructures by self-assembly. ChemSusChem 2012, 5, 140–148, doi:10.1002/cssc.201100491.
[39]  Olsson, L.; Karlsson, H. The beneficial effect of SO2 on platinum migration and NO oxidation over Pt containing monolith catalysts. Catal. Today 2009, 147S, S290–S294.
[40]  Toops, T.J.; Ottinger, N.A.; Liang, C.; Pihl, J.A.; Payzant, E.A. Impact of dopants on the sulfation, desulfation and NOx reduction performance of Ba-based NOx storage-reduction catalysts. Catal. Today 2011, 160, 131–136.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413