The gene expression kinetics for human cells exposed to hyperthermic stress are not well characterized. In this study, we identified and characterized the genes that are differentially expressed in human epidermal keratinocyte (HEK) cells exposed to hyperthermic stress. In order to obtain temporal gene expression kinetics, we exposed HEK cells to a heat stress protocol (44 °C for 40 min) and used messenger RNA (mRNA) microarrays at 0 h, 4 h and 24 h post-exposure. Bioinformatics software was employed to characterize the chief biological processes and canonical pathways associated with these heat stress genes. The data shows that the genes encoding for heat shock proteins (HSPs) that function to prevent further protein denaturation and aggregation, such as HSP40, HSP70 and HSP105, exhibit maximal expression immediately after exposure to hyperthermic stress. In contrast, the smaller HSPs, such as HSP10 and HSP27, which function in mitochondrial protein biogenesis and cellular adaptation, exhibit maximal expression during the “recovery phase”, roughly 24 h post-exposure. These data suggest that the temporal expression kinetics for each particular HSP appears to correlate with the cellular function that is required at each time point. In summary, these data provide additional insight regarding the expression kinetics of genes that are triggered in HEK cells exposed to hyperthermic stress.
References
[1]
Schreck, R.; Albermann, K.; Baeuerle, P.A. Nuclear factor kappa B: An oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic. Res. Commun. 1992, 17, 221–237, doi:10.3109/10715769209079515.
[2]
Wilmink, G.J.; Grundt, J.E. Invited review article: Current state of research on biological effects of terahertz radiation. J. Infrared. Millim. Te. 2011, 32, 1074–1122, doi:10.1007/s10762-011-9794-5.
[3]
Wilmink, G.J.; Opalenik, S.R.; Beckham, J.T.; Abraham, A.A.; Nanney, L.B.; Mahadevan-Jansen, A.; Davidson, J.M.; Jansen, E.D. Molecular imaging-assisted optimization of hsp70 expression during laser-induced thermal preconditioning for wound repair enhancement. J. Invest. Dermatol. 2009, 129, 205–216, doi:10.1038/jid.2008.175.
Richter, K.; Haslbeck, M.; Buchner, J. The heat shock response: Life on the verge of death. Mol. Cell 2010, 40, 253–266, doi:10.1016/j.molcel.2010.10.006.
[12]
Kultz, D. Evolution of the cellular stress proteome: From monophyletic origin to ubiquitous function. J. Exp. Biol. 2003, 206, 3119–3124, doi:10.1242/jeb.00549.
[13]
Kultz, D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol. 2005, 67, 225–257, doi:10.1146/annurev.physiol.67.040403.103635.
[14]
Otto, A.I.; Riou, L.; Marionnet, C.; Mori, T.; Sarasin, A.; Magnaldo, T. Differential behaviors toward ultraviolet A and B radiation of fibroblasts and keratinocytes from normal and DNA-repair-deficient patients. Cancer Res. 1999, 59, 1212–1218.
[15]
Sesto, A. Analysis of the ultraviolet B response in primary human keratinocytes using oligonucleotide microarrays. Proc. Natl. Acad. Sci. USA 2002, 99, 2965–2970, doi:10.1073/pnas.052678999.
[16]
Li, D.; Turi, T.G.; Schuck, A.; Freedberg, I.M.; Khitrov, G.; Blumenberg, M. Rays and arrays: The transcriptional program in the response of human epidermal keratinocytes to UVB illumination. FASEB J. 2001, 15, 2533–2535.
[17]
Howell, B.G.; Wang, B.; Freed, I.; Mamelak, A.J.; Watanabe, H.; Sauder, D.N. Microarray analysis of UVB-regulated genes in keratinocytes: Downregulation of angiogenesis inhibitor thrombospondin-1. J. Dermatol. Sci. 2004, 34, 185–194, doi:10.1016/j.jdermsci.2004.01.004.
[18]
Bender, K.; Blattner, C.; Knebel, A.; Iordanov, M.; Herrlich, P.; Rahmsdorf, H.J. UV-induced signal transduction. J. Photochem. Photobiol. B Biol. 1997, 37, 1–17, doi:10.1016/S1011-1344(96)07459-3.
[19]
Tyrrell, R.M. Activation of mammalian gene expression by the UV component of sunlight—From models to reality. BioEssays 1996, 18, 139–148, doi:10.1002/bies.950180210.
[20]
Rygiel, T.P.; Mertens, A.E.; Strumane, K.; van der Kammen, R.; Collard, J.G. The Rac activator Tiam1 prevents keratinocytes apoptosis by controlling ROS-mediated ERK phosphorylation. J. Cell Sci. 2008, 121, 1183–1192, doi:10.1242/jcs.017194.
[21]
Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B 1995, 57, 289–300.
[22]
Ingenuity Systems, Inc. Home Page. Available online: http://www.ingenuity.com/ (accessed on 1 August 2012).
[23]
GeneCards? Home Page. Available online: http://www.genecards.org/ (accessed on 1 August 2012).
[24]
HGNC, HUGO Gene Nomenclature Committee Home Page. Available online: http://www.genenames.org/ (accessed on 1 August 2012).
[25]
The Gene Ontology Home Page. Available online: http://geneontology.org/ (accessed on 1 August 2012).