全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Cancers  2013 

Integrin α5β1, the Fibronectin Receptor, as a Pertinent Therapeutic Target in Solid Tumors

DOI: 10.3390/cancers5010027

Keywords: α5β1, integrin, fibronectin receptor, solid tumors, angiogenesis, antagonists

Full-Text   Cite this paper   Add to My Lib

Abstract:

Integrins are transmembrane heterodimeric proteins sensing the cell microenvironment and modulating numerous signalling pathways. Changes in integrin expression between normal and tumoral cells support involvement of specific integrins in tumor progression and aggressiveness. This review highlights the current knowledge about α5β1 integrin, also called the fibronectin receptor, in solid tumors. We summarize data showing that α5β1 integrin is a pertinent therapeutic target expressed by tumoral neovessels and tumoral cells. Although mainly evaluated in preclinical models, α5β1 integrin merits interest in particular in colon, breast, ovarian, lung and brain tumors where its overexpression is associated with a poor prognosis for patients. Specific α5β1 integrin antagonists will be listed that may represent new potential therapeutic agents to fight defined subpopulations of particularly aggressive tumors.

References

[1]  Desgrosellier, J.S.; Cheresh, D.A. Integrins in cancer: Biological implications and therapeutic opportunities. Nat. Rev. Cancer 2010, 10, 9–22, doi:10.1038/nrc2748.
[2]  Goodman, S.L.; Picard, M. Integrins as therapeutic targets. Trends Pharmacol. Sci. 2012, 33, 405–412, doi:10.1016/j.tips.2012.04.002.
[3]  Aoudjit, F.; Vuori, K. Integrin signaling in cancer cell survival and chemoresistance. Chemother. Res. Pract. 2012, 2012, 283181.
[4]  Avraamides, C.J.; Garmy-Susini, B.; Varner, J.A. Integrins in angiogenesis and lymphangiogenesis. Nat. Rev. Cancer 2008, 8, 604–617, doi:10.1038/nrc2353.
[5]  Chamberlain, M.C.; Cloughsey, T.; Reardon, D.A.; Wen, P.Y. A novel treatment for glioblastoma: Integrin inhibition. Expert Rev. Neurother. 2012, 12, 421–435, doi:10.1586/ern.11.188.
[6]  Campbell, I.D.; Humphries, M.J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol. 2011, doi:10.1101/cshperspect.a004994.
[7]  Kim, C.; Ye, F.; Ginsberg, M.H. Regulation of integrin activation. Annu. Rev. Cell. Dev. Biol. 2011, 27, 321–345, doi:10.1146/annurev-cellbio-100109-104104.
[8]  Hu, P.; Luo, B.H. Integrin bi-directional signaling across the plasma membrane. J. Cell. Physiol. 2013, 228, 306–312, doi:10.1002/jcp.24154.
[9]  Cox, D.; Brennan, M.; Moran, N. Integrins as therapeutic targets: Lessons and opportunities. Nat. Rev. Drug Discov. 2010, 9, 804–820.
[10]  Lee, J.O.; Bankston, L.A.; Arnaout, M.A.; Liddington, R.C. Two conformations of the integrin A-domain (I-domain): A pathway for activation? Structure 1995, 3, 1333–1340, doi:10.1016/S0969-2126(01)00271-4.
[11]  Aota, S.; Nomizu, M.; Yamada, K.M. The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J. Biol. Chem. 1994, 269, 24756–24761.
[12]  Obara, M.; Kang, M.S.; Yamada, K.M. Site-directed mutagenesis of the cell-binding domain of human fibronectin: Separable, synergistic sites mediate adhesive function. Cell 1988, 53, 649–657.
[13]  Nagae, M.; Re, S.; Mihara, E.; Nogi, T.; Sugita, Y.; Takagi, J. Crystal structure of alpha5beta1 integrin ectodomain: Atomic details of the fibronectin receptor. J. Cell Biol. 2012, 197, 131–140, doi:10.1083/jcb.201111077.
[14]  Barczyk, M.; Carracedo, S.; Gullberg, D. Integrins. Cell Tissue Res. 2010, 339, 269–280, doi:10.1007/s00441-009-0834-6.
[15]  Xiong, J.P.; Stehle, T.; Diefenbach, B.; Zhang, R.; Dunker, R.; Scott, D.L.; Joachimiak, A.; Goodman, S.L.; Arnaout, M.A. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 2001, 294, 339–345.
[16]  Lau, T.L.; Kim, C.; Ginsberg, M.H.; Ulmer, T.S. The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling. EMBO. J. 2009, 28, 1351–1361, doi:10.1038/emboj.2009.63.
[17]  Shattil, S.J.; Kim, C.; Ginsberg, M.H. The final steps of integrin activation: The end game. Nat. Rev. Mol. Cell Biol. 2010, 11, 288–300, doi:10.1038/nrm2871.
[18]  Pouwels, J.; Nevo, J.; Pellinen, T.; Ylanne, J.; Ivaska, J. Negative regulators of integrin activity. J. Cell. Sci. 2012, 125, 3271–3280, doi:10.1242/jcs.093641.
[19]  Alahari, S.K.; Nasrallah, H. A membrane proximal region of the integrin alpha5 subunit is important for its interaction with nischarin. Biochem. J. 2004, 377, 449–457, doi:10.1042/BJ20030411.
[20]  Valdembri, D.; Caswell, P.T.; Anderson, K.I.; Schwarz, J.P.; Konig, I.; Astanina, E.; Caccavari, F.; Norman, J.C.; Humphries, M.J.; Bussolino, F.; et al. Neuropilin-1/GIPC1 signaling regulates alpha5beta1 integrin traffic and function in endothelial cells. PLoS Biol. 2009, 7, e25, doi:10.1371/journal.pbio.1000025.
[21]  Margadant, C.; Monsuur, H.N.; Norman, J.C.; Sonnenberg, A. Mechanisms of integrin activation and trafficking. Curr. Opin. Cell Biol. 2011, 23, 607–614, doi:10.1016/j.ceb.2011.08.005.
[22]  Lobert, V.H.; Brech, A.; Pedersen, N.M.; Wesche, J.; Oppelt, A.; Malerod, L.; Stenmark, H. Ubiquitination of alpha 5 beta 1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes. Dev. Cell 2010, 19, 148–159, doi:10.1016/j.devcel.2010.06.010.
[23]  Shi, F.; Sottile, J. Caveolin-1-dependent beta1 integrin endocytosis is a critical regulator of fibronectin turnover. J. Cell. Sci. 2008, 121, 2360–2371, doi:10.1242/jcs.014977.
[24]  Pellinen, T.; Arjonen, A.; Vuoriluoto, K.; Kallio, K.; Fransen, J.A.; Ivaska, J. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins. J. Cell Biol. 2006, 173, 767–780, doi:10.1083/jcb.200509019.
[25]  Caswell, P.T.; Chan, M.; Lindsay, A.J.; McCaffrey, M.W.; Boettiger, D.; Norman, J.C. Rab-coupling protein coordinates recycling of alpha5beta1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J. Cell Biol. 2008, 183, 143–155, doi:10.1083/jcb.200804140.
[26]  Bridgewater, R.E.; Norman, J.C.; Caswell, P.T. Integrin trafficking at a glance. J. Cell. Sci. 2012, 125, 3695–3701.
[27]  Caswell, P.T.; Spence, H.J.; Parsons, M.; White, D.P.; Clark, K.; Cheng, K.W.; Mills, G.B.; Humphries, M.J.; Messent, A.J.; Anderson, K.I.; et al. Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Dev. Cell 2007, 13, 496–510, doi:10.1016/j.devcel.2007.08.012.
[28]  Schwartz, M.A. Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb. Perspect. Biol. 2010, 2, a005066, doi:10.1101/cshperspect.a005066.
[29]  Roca-Cusachs, P.; Iskratsch, T.; Sheetz, M.P. Finding the weakest link: Exploring integrin-mediated mechanical molecular pathways. J. Cell. Sci. 2012, 125, 3025–3038, doi:10.1242/jcs.095794.
[30]  Roca-Cusachs, P.; Gauthier, N.C.; Del Rio, A.; Sheetz, M.P. Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction. Proc. Natl. Acad. Sci. USA 2009, 106, 16245–16250.
[31]  Friedland, J.C.; Lee, M.H.; Boettiger, D. Mechanically activated integrin switch controls alpha5beta1 function. Science 2009, 323, 642–644, doi:10.1126/science.1168441.
[32]  Mierke, C.T.; Frey, B.; Fellner, M.; Herrmann, M.; Fabry, B. Integrin alpha5beta1 facilitates cancer cell invasion through enhanced contractile forces. J. Cell. Sci. 2011, 124, 369–383, doi:10.1242/jcs.071985.
[33]  Menon, S.; Beningo, K.A. Cancer cell invasion is enhanced by applied mechanical stimulation. PLoS One 2011, 6, e17277.
[34]  Yang, J.T.; Rayburn, H.; Hynes, R.O. Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 1995, 121, 549–560.
[35]  Bader, B.L.; Rayburn, H.; Crowley, D.; Hynes, R.O. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 1998, 95, 507–519, doi:10.1016/S0092-8674(00)81618-9.
[36]  Carlson, T.R.; Hu, H.; Braren, R.; Kim, Y.H.; Wang, R.A. Cell-autonomous requirement for beta1 integrin in endothelial cell adhesion, migration and survival during angiogenesis in mice. Development 2008, 135, 2193–2202, doi:10.1242/dev.016378.
[37]  Yang, J.T.; Rayburn, H.; Hynes, R.O. Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 1993, 119, 1093–1105.
[38]  Goh, K.L.; Yang, J.T.; Hynes, R.O. Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos. Development 1997, 124, 4309–4319.
[39]  George, E.L.; Georges-Labouesse, E.N.; Patel-King, R.S.; Rayburn, H.; Hynes, R.O. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 1993, 119, 1079–1091.
[40]  Van der Flier, A.; Badu-Nkansah, K.; Whittaker, C.A.; Crowley, D.; Bronson, R.T.; Lacy-Hulbert, A.; Hynes, R.O. Endothelial alpha5 and alphav integrins cooperate in remodeling of the vasculature during development. Development 2010, 137, 2439–2449.
[41]  Li, L.; Welser-Alves, J.; van der Flier, A.; Boroujerdi, A.; Hynes, R.O.; Milner, R. An angiogenic role for the alpha5beta1 integrin in promoting endothelial cell proliferation during cerebral hypoxia. Exp. Neurol. 2012, 237, 46–54, doi:10.1016/j.expneurol.2012.06.005.
[42]  Sudhakar, A.; Sugimoto, H.; Yang, C.; Lively, J.; Zeisberg, M.; Kalluri, R. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc. Natl. Acad. Sci. USA 2003, 100, 4766–4771, doi:10.1073/pnas.0730882100.
[43]  Orecchia, A.; Lacal, P.M.; Schietroma, C.; Morea, V.; Zambruno, G.; Failla, C.M. Vascular endothelial growth factor receptor-1 is deposited in the extracellular matrix by endothelial cells and is a ligand for the alpha 5 beta 1 integrin. J. Cell. Sci. 2003, 116, 3479–3489, doi:10.1242/jcs.00673.
[44]  Felcht, M.; Luck, R.; Schering, A.; Seidel, P.; Srivastava, K.; Hu, J.; Bartol, A.; Kienast, Y.; Vettel, C.; Loos, E.K.; et al. Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J. Clin. Invest. 2012, 122, 1991–2005.
[45]  Kim, S.; Bell, K.; Mousa, S.A.; Varner, J.A. Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am. J. Pathol. 2000, 156, 1345–1362, doi:10.1016/S0002-9440(10)65005-5.
[46]  Magnussen, A.; Kasman, I.M.; Norberg, S.; Baluk, P.; Murray, R.; McDonald, D.M. Rapid access of antibodies to alpha5beta1 integrin overexpressed on the luminal surface of tumor blood vessels. Cancer Res. 2005, 65, 2712–2721.
[47]  Zhang, H.; Li, C.; Baciu, P.C. Expression of integrins and MMPs during alkaline-burn-induced corneal angiogenesis. Invest. Ophthalmol. Vis. Sci. 2002, 43, 955–962.
[48]  Bussolati, B.; Deambrosis, I.; Russo, S.; Deregibus, M.C.; Camussi, G. Altered angiogenesis and survival in human tumor-derived endothelial cells. FASEB J. 2003, 17, 1159–1161.
[49]  Parsons-Wingerter, P.; Kasman, I.M.; Norberg, S.; Magnussen, A.; Zanivan, S.; Rissone, A.; Baluk, P.; Favre, C.J.; Jeffry, U.; Murray, R.; et al. Uniform overexpression and rapid accessibility of alpha5beta1 integrin on blood vessels in tumors. Am. J. Pathol. 2005, 167, 193–211, doi:10.1016/S0002-9440(10)62965-3.
[50]  Klein, S.; de Fougerolles, A.R.; Blaikie, P.; Khan, L.; Pepe, A.; Green, C.D.; Koteliansky, V.; Giancotti, F.G. Alpha 5 beta 1 integrin activates an NF-kappa B-dependent program of gene expression important for angiogenesis and inflammation. Mol. Cell. Biol. 2002, 22, 5912–5922.
[51]  Kim, S.; Bakre, M.; Yin, H.; Varner, J.A. Inhibition of endothelial cell survival and angiogenesis by protein kinase A. J. Clin. Invest. 2002, 110, 933–941.
[52]  Stupack, D.G.; Puente, X.S.; Boutsaboualoy, S.; Storgard, C.M.; Cheresh, D.A. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J. Cell. Biol. 2001, 155, 459–470, doi:10.1083/jcb.200106070.
[53]  Bhaskar, V.; Zhang, D.; Fox, M.; Seto, P.; Wong, M.H.; Wales, P.E.; Powers, D.; Chao, D.T.; Dubridge, R.B.; Ramakrishnan, V. A function blocking anti-mouse integrin alpha5beta1 antibody inhibits angiogenesis and impedes tumor growth in vivo. J. Transl. Med. 2007, 5, 61, doi:10.1186/1479-5876-5-61.
[54]  Varner, J.A.; Emerson, D.A.; Juliano, R.L. Integrin alpha 5 beta 1 expression negatively regulates cell growth: Reversal by attachment to fibronectin. Mol. Biol. Cell. 1995, 6, 725–740.
[55]  O'Brien, V.; Frisch, S.M.; Juliano, R.L. Expression of the integrin alpha 5 subunit in HT29 colon carcinoma cells suppresses apoptosis triggered by serum deprivation. Exp. Cell. Res. 1996, 224, 208–213, doi:10.1006/excr.1996.0130.
[56]  Schmidt, R.; Streit, M.; Kaiser, R.; Herzberg, F.; Schirner, M.; Schramm, K.; Kaufmann, C.; Henneken, M.; Schafer-Korting, M.; Thiel, E.; et al. De novo expression of the alpha5beta1-fibronectin receptor in HT29 colon-cancer cells reduces activity of C-SRC. Increase of C-SRC activity by attachment on fibronectin. Int. J. Cancer 1998, 76, 91–98, doi:10.1002/(SICI)1097-0215(19980330)76:1<91::AID-IJC15>3.0.CO;2-J.
[57]  Schirner, M.; Herzberg, F.; Schmidt, R.; Streit, M.; Schoning, M.; Hummel, M.; Kaufmann, C.; Thiel, E.; Kreuser, E.D. Integrin alpha5beta1: A potent inhibitor of experimental lung metastasis. Clin. Exp. Metastasis 1998, 16, 427–435.
[58]  Chantret, I.; Barbat, A.; Dussaulx, E.; Brattain, M.G.; Zweibaum, A. Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: A survey of twenty cell lines. Cancer Res. 1988, 48, 1936–1942.
[59]  Gong, J.; Wang, D.; Sun, L.; Zborowska, E.; Willson, J.K.; Brattain, M.G. Role of alpha 5 beta 1 integrin in determining malignant properties of colon carcinoma cells. Cell Growth Differ. 1997, 8, 83–90.
[60]  Murillo, C.A.; Rychahou, P.G.; Evers, B.M. Inhibition of alpha5 integrin decreases PI3K activation and cell adhesion of human colon cancers. Surgery 2004, 136, 143–149, doi:10.1016/j.surg.2004.04.006.
[61]  Toquet, C.; Colson, A.; Jarry, A.; Bezieau, S.; Volteau, C.; Boisseau, P.; Merlin, D.; Laboisse, C.L.; Mosnier, J.F. ADAM15 to alpha5beta1 integrin switch in colon carcinoma cells: A late event in cancer progression associated with tumor dedifferentiation and poor prognosis. Int. J. Cancer 2012, 130, 278–287.
[62]  Koike, T.; Kimura, N.; Miyazaki, K.; Yabuta, T.; Kumamoto, K.; Takenoshita, S.; Chen, J.; Kobayashi, M.; Hosokawa, M.; Taniguchi, A.; et al. Hypoxia induces adhesion molecules on cancer cells: A missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc. Natl. Acad. Sci. USA 2004, 101, 8132–8137.
[63]  Anderson, J.A.; Grabowska, A.M.; Watson, S.A. PTHrP increases transcriptional activity of the integrin subunit alpha5. Br. J. Cancer 2007, 96, 1394–1403.
[64]  Nam, E.H.; Lee, Y.; Park, Y.K.; Lee, J.W.; Kim, S. ZEB2 upregulates integrin alpha5 expression through cooperation with Sp1 to induce invasion during epithelial-mesenchymal transition of human cancer cells. Carcinogenesis 2012, 33, 563–571, doi:10.1093/carcin/bgs005.
[65]  Reyes-Reyes, M.E.; George, M.D.; Roberts, J.D.; Akiyama, S.K. P-selectin activates integrin-mediated colon carcinoma cell adhesion to fibronectin. Exp. Cell. Res. 2006, 312, 4056–4069, doi:10.1016/j.yexcr.2006.09.008.
[66]  Camacho-Leal, P.; Zhai, A.B.; Stanners, C.P. A co-clustering model involving alpha5beta1 integrin for the biological effects of GPI-anchored human carcinoembryonic antigen (CEA). J. Cell. Physiol. 2007, 211, 791–802, doi:10.1002/jcp.20989.
[67]  Dia, V.P.; Mejia, E.G. Lunasin promotes apoptosis in human colon cancer cells by mitochondrial pathway activation and induction of nuclear clusterin expression. Cancer Lett. 2011, 295, 44–53.
[68]  Shibata, K.; Kikkawa, F.; Nawa, A.; Suganuma, N.; Hamaguchi, M. Fibronectin secretion from human peritoneal tissue induces Mr 92,000 type IV collagenase expression and invasion in ovarian cancer cell lines. Cancer Res. 1997, 57, 5416–5420.
[69]  Casey, R.C.; Burleson, K.M.; Skubitz, K.M.; Pambuccian, S.E.; Oegema, T.R., Jr.; Ruff, L.E.; Skubitz, A.P. Beta 1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. Am. J. Pathol. 2001, 159, 2071–2080, doi:10.1016/S0002-9440(10)63058-1.
[70]  Burleson, K.M.; Casey, R.C.; Skubitz, K.M.; Pambuccian, S.E.; Oegema, T.R., Jr.; Skubitz, A.P. Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecol. Oncol. 2004, 93, 170–181, doi:10.1016/j.ygyno.2003.12.034.
[71]  Yokoyama, Y.; Ramakrishnan, S. Binding of endostatin to human ovarian cancer cells inhibits cell attachment. Int. J. Cancer 2007, 121, 2402–2409, doi:10.1002/ijc.22935.
[72]  Yokoyama, Y.; Sedgewick, G.; Ramakrishnan, S. Endostatin binding to ovarian cancer cells inhibits peritoneal attachment and dissemination. Cancer Res. 2007, 67, 10813–10822, doi:10.1158/0008-5472.CAN-07-0172.
[73]  Dong, Y.; Tan, O.L.; Loessner, D.; Stephens, C.; Walpole, C.; Boyle, G.M.; Parsons, P.G.; Clements, J.A. Kallikrein-related peptidase 7 promotes multicellular aggregation via the alpha(5)beta(1) integrin pathway and paclitaxel chemoresistance in serous epithelial ovarian carcinoma. Cancer Res. 2010, 70, 2624–2633, doi:10.1158/0008-5472.CAN-09-3415.
[74]  Sawada, K.; Mitra, A.K.; Radjabi, A.R.; Bhaskar, V.; Kistner, E.O.; Tretiakova, M.; Jagadeeswaran, S.; Montag, A.; Becker, A.; Kenny, H.A.; et al. Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Res. 2008, 68, 2329–2339.
[75]  Li, Q.; Liu, S.; Lin, B.; Yan, L.; Wang, Y.; Wang, C.; Zhang, S. Expression and correlation of Lewis y antigen and integrins alpha5 and beta1 in ovarian serous and mucinous carcinoma. Int. J. Gynecol. Cancer 2010, 20, 1482–1489.
[76]  Mitra, A.K.; Sawada, K.; Tiwari, P.; Mui, K.; Gwin, K.; Lengyel, E. Ligand-independent activation of c-Met by fibronectin and alpha(5)beta(1)-integrin regulates ovarian cancer invasion and metastasis. Oncogene 2011, 30, 1566–1576, doi:10.1038/onc.2010.532.
[77]  Deng, B.; Zhang, S.; Miao, Y.; Han, Z.; Zhang, X.; Wen, F.; Zhang, Y. Adrenomedullin expression in epithelial ovarian cancers and promotes HO8910 cell migration associated with upregulating integrin alpha5beta1 and phosphorylating FAK and paxillin. J. Exp. Clin. Cancer Res. 2012, 31, 19, doi:10.1186/1756-9966-31-19.
[78]  Sawada, K.; Ohyagi-Hara, C.; Kimura, T.; Morishige, K. Integrin inhibitors as a therapeutic agent for ovarian cancer. J. Oncol. 2012, 2012, 915140.
[79]  Seftor, R.E.; Seftor, E.A.; Sheng, S.; Pemberton, P.A.; Sager, R.; Hendrix, M.J. Maspin suppresses the invasive phenotype of human breast carcinoma. Cancer Res. 1998, 58, 5681–5685.
[80]  Ignatoski, K.M.; Maehama, T.; Markwart, S.M.; Dixon, J.E.; Livant, D.L.; Ethier, S.P. ERBB-2 overexpression confers PI 3' kinase-dependent invasion capacity on human mammary epithelial cells. Br. J. Cancer 2000, 82, 666–674, doi:10.1054/bjoc.1999.0979.
[81]  Jia, Y.; Zeng, Z.Z.; Markwart, S.M.; Rockwood, K.F.; Ignatoski, K.M.; Ethier, S.P.; Livant, D.L. Integrin fibronectin receptors in matrix metalloproteinase-1-dependent invasion by breast cancer and mammary epithelial cells. Cancer Res. 2004, 64, 8674–8681.
[82]  Maschler, S.; Wirl, G.; Spring, H.; Bredow, D.V.; Sordat, I.; Beug, H.; Reichmann, E. Tumor cell invasiveness correlates with changes in integrin expression and localization. Oncogene 2005, 24, 2032–2041, doi:10.1038/sj.onc.1208423.
[83]  Spangenberg, C.; Lausch, E.U.; Trost, T.M.; Prawitt, D.; May, A.; Keppler, R.; Fees, S.A.; Reutzel, D.; Bell, C.; Schmitt, S.; et al. ERBB2-mediated transcriptional up-regulation of the alpha5beta1 integrin fibronectin receptor promotes tumor cell survival under adverse conditions. Cancer Res. 2006, 66, 3715–3725.
[84]  Qin, L.; Chen, X.; Wu, Y.; Feng, Z.; He, T.; Wang, L.; Liao, L.; Xu, J. Steroid receptor coactivator-1 upregulates integrin alpha(5) expression to promote breast cancer cell adhesion and migration. Cancer Res. 2011, 71, 1742–1751.
[85]  Baranwal, S.; Wang, Y.; Rathinam, R.; Lee, J.; Jin, L.; McGoey, R.; Pylayeva, Y.; Giancotti, F.; Blobe, G.C.; Alahari, S.K. Molecular characterization of the tumor-suppressive function of nischarin in breast cancer. J. Natl. Cancer Inst. 2011, 103, 1513–1528, doi:10.1093/jnci/djr350.
[86]  Wong, A.W.; Paulson, Q.X.; Hong, J.; Stubbins, R.E.; Poh, K.; Schrader, E.; Nunez, N.P. Alcohol promotes breast cancer cell invasion by regulating the Nm23-ITGA5 pathway. J. Exp. Clin. Cancer Res. 2011, 30, 75, doi:10.1186/1756-9966-30-75.
[87]  Wu, H.; Liang, Y.L.; Li, Z.; Jin, J.; Zhang, W.; Duan, L.; Zha, X. Positive expression of E-cadherin suppresses cell adhesion to fibronectin via reduction of alpha5beta1 integrin in human breast carcinoma cells. J. Cancer Res. Clin. Oncol. 2006, 132, 795–803, doi:10.1007/s00432-006-0128-2.
[88]  Imanishi, Y.; Hu, B.; Jarzynka, M.J.; Guo, P.; Elishaev, E.; Bar-Joseph, I.; Cheng, S.Y. Angiopoietin-2 stimulates breast cancer metastasis through the alpha(5)beta(1) integrin-mediated pathway. Cancer Res. 2007, 67, 4254–4263.
[89]  Morozevich, G.; Kozlova, N.; Cheglakov, I.; Ushakova, N.; Berman, A. Integrin alpha5beta1 controls invasion of human breast carcinoma cells by direct and indirect modulation of MMP-2 collagenase activity. Cell Cycle 2009, 8, 2219–2225.
[90]  Baranwal, S.; Wang, Y.; Rathinam, R.; Lee, J.; Jin, L.; McGoey, R.; Pylayeva, Y.; Giancotti, F.; Blobe, G.C.; Alahari, S.K. Molecular characterization of the tumor-suppressive function of nischarin in breast cancer. J. Natl. Cancer Inst. 2011, 103, 1513–1528, doi:10.1093/jnci/djr350.
[91]  Nam, J.M.; Onodera, Y.; Bissell, M.J.; Park, C.C. Breast cancer cells in three-dimensional culture display an enhanced radioresponse after coordinate targeting of integrin alpha5beta1 and fibronectin. Cancer Res. 2010, 70, 5238–5248, doi:10.1158/0008-5472.CAN-09-2319.
[92]  Mythreye, K.; Knelson, E.H.; Gatza, C.E.; Gatza, M.L.; Blobe, G.C. TbetaRIII/beta-arrestin2 regulates integrin alpha5beta1 trafficking, function, and localization in epithelial cells. Oncogene 2012, doi:10.1038/onc.2012.157.
[93]  Wang, Y.; Shenouda, S.; Baranwal, S.; Rathinam, R.; Jain, P.; Bao, L.; Hazari, S.; Dash, S.; Alahari, S.K. Integrin subunits alpha5 and alpha6 regulate cell cycle by modulating the chk1 and Rb/E2F pathways to affect breast cancer metastasis. Mol. Cancer 2011, 10, 84, doi:10.1186/1476-4598-10-84.
[94]  Dingemans, A.M.; van den Boogaart, V.; Vosse, B.A.; van Suylen, R.J.; Griffioen, A.W.; Thijssen, V.L. Integrin expression profiling identifies integrin alpha5 and beta1 as prognostic factors in early stage non-small cell lung cancer. Mol. Cancer 2010, 9, 152, doi:10.1186/1476-4598-9-152.
[95]  Adachi, M.; Taki, T.; Higashiyama, M.; Kohno, N.; Inufusa, H.; Miyake, M. Significance of integrin alpha5 gene expression as a prognostic factor in node-negative non-small cell lung cancer. Clin. Cancer Res. 2000, 6, 96–101.
[96]  Han, J.Y.; Kim, H.S.; Lee, S.H.; Park, W.S.; Lee, J.Y.; Yoo, N.J. Immunohistochemical expression of integrins and extracellular matrix proteins in non-small cell lung cancer: Correlation with lymph node metastasis. Lung Cancer 2003, 41, 65–70.
[97]  Lawson, M.H.; Cummings, N.M.; Rassl, D.M.; Vowler, S.L.; Wickens, M.; Howat, W.J.; Brenton, J.D.; Murphy, G.; Rintoul, R.C. Bcl-2 and beta1-integrin predict survival in a tissue microarray of small cell lung cancer. Br. J. Cancer 2010, 103, 1710–1715, doi:10.1038/sj.bjc.6605950.
[98]  Roman, J.; Ritzenthaler, J.D.; Roser-Page, S.; Sun, X.; Han, S. alpha5beta1-integrin expression is essential for tumor progression in experimental lung cancer. Am. J. Respir. Cell Mol. Biol. 2010, 43, 684–691, doi:10.1165/rcmb.2009-0375OC.
[99]  Han, S.; Khuri, F.R.; Roman, J. Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Res. 2006, 66, 315–323, doi:10.1158/0008-5472.CAN-05-2367.
[100]  Ritzenthaler, J.D.; Han, S.; Roman, J. Stimulation of lung carcinoma cell growth by fibronectin-integrin signalling. Mol. Biosyst. 2008, 4, 1160–1169, doi:10.1039/b800533h.
[101]  Caccavari, F.; Valdembri, D.; Sandri, C.; Bussolino, F.; Serini, G. Integrin signaling and lung cancer. Cell Adh. Migr. 2009, 4, 124–129.
[102]  Sethi, T.; Rintoul, R.C.; Moore, S.M.; MacKinnon, A.C.; Salter, D.; Choo, C.; Chilvers, E.R.; Dransfield, I.; Donnelly, S.C.; Strieter, R.; Haslett, C. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: A mechanism for small cell lung cancer growth and drug resistance in vivo. Nat. Med. 1999, 5, 662–628.
[103]  Rintoul, R.C.; Sethi, T. Extracellular matrix regulation of drug resistance in small-cell lung cancer. Clin. Sci. (Lond.) 2002, 102, 417–424, doi:10.1042/CS20010216.
[104]  Buttery, R.C.; Rintoul, R.C.; Sethi, T. Small cell lung cancer: The importance of the extracellular matrix. Int. J. Biochem. Cell Biol. 2004, 36, 1154–1160, doi:10.1016/S1357-2725(03)00261-9.
[105]  Hodkinson, P.S.; Elliott, T.; Wong, W.S.; Rintoul, R.C.; Mackinnon, A.C.; Haslett, C.; Sethi, T. ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through beta1 integrin-dependent activation of PI3-kinase. Cell Death Differ. 2006, 13, 1776–1788, doi:10.1038/sj.cdd.4401849.
[106]  Gingras, M.C.; Roussel, E.; Bruner, J.M.; Branch, C.D.; Moser, R.P. Comparison of cell adhesion molecule expression between glioblastoma multiforme and autologous normal brain tissue. J. Neuroimmunol. 1995, 57, 143–153, doi:10.1016/0165-5728(94)00178-Q.
[107]  Riemenschneider, M.J.; Mueller, W.; Betensky, R.A.; Mohapatra, G.; Louis, D.N. In situ analysis of integrin and growth factor receptor signaling pathways in human glioblastomas suggests overlapping relationships with focal adhesion kinase activation. Am. J. Pathol. 2005, 167, 1379–1387, doi:10.1016/S0002-9440(10)61225-4.
[108]  Kita, D.; Takino, T.; Nakada, M.; Takahashi, T.; Yamashita, J.; Sato, H. Expression of dominant-negative form of Ets-1 suppresses fibronectin-stimulated cell adhesion and migration through down-regulation of integrin alpha5 expression in U251 glioma cell line. Cancer Res. 2001, 61, 7985–7991.
[109]  Janouskova, H.; Maglott, A.; Leger, D.Y.; Bossert, C.; Noulet, F.; Guerin, E.; Guenot, D.; Pinel, S.; Chastagner, P.; Plenat, F.; et al. Integrin alpha5beta1 plays a critical role in resistance to temozolomide by interfering with the p53 pathway in high-grade glioma. Cancer Res. 2012, 72, 3463–3470.
[110]  Cosset, E.C.; Godet, J.; Entz-Werle, N.; Guerin, E.; Guenot, D.; Froelich, S.; Bonnet, D.; Pinel, S.; Plenat, F.; Chastagner, P.; et al. Involvement of the TGFbeta pathway in the regulation of alpha5 beta1 integrins by caveolin-1 in human glioblastoma. Int. J. Cancer 2012, 131, 601–611.
[111]  Holmes, K.M.; Annala, M.; Chua, C.Y.; Dunlap, S.M.; Liu, Y.; Hugen, N.; Moore, L.M.; Cogdell, D.; Hu, L.; Nykter, M.; et al. Insulin-like growth factor-binding protein 2-driven glioma progression is prevented by blocking a clinically significant integrin, integrin-linked kinase, and NF-kappaB network. Proc. Natl. Acad. Sci. USA 2012, 109, 3475–3480.
[112]  Martin, S.; Cosset, E.C.; Terrand, J.; Maglott, A.; Takeda, K.; Dontenwill, M. Caveolin-1 regulates glioblastoma aggressiveness through the control of alpha(5)beta(1) integrin expression and modulates glioblastoma responsiveness to SJ749, an alpha(5)beta(1) integrin antagonist. Biochim. Biophys. Acta 2009, 1793, 354–367, doi:10.1016/j.bbamcr.2008.09.019.
[113]  Martinkova, E.; Maglott, A.; Leger, D.Y.; Bonnet, D.; Stiborova, M.; Takeda, K.; Martin, S.; Dontenwill, M. alpha5beta1 integrin antagonists reduce chemotherapy-induced premature senescence and facilitate apoptosis in human glioblastoma cells. Int. J. Cancer 2010, 127, 1240–1248, doi:10.1002/ijc.25187.
[114]  Maglott, A.; Bartik, P.; Cosgun, S.; Klotz, P.; Ronde, P.; Fuhrmann, G.; Takeda, K.; Martin, S.; Dontenwill, M. The small alpha5beta1 integrin antagonist, SJ749, reduces proliferation and clonogenicity of human astrocytoma cells. Cancer Res. 2006, 66, 6002–6007, doi:10.1158/0008-5472.CAN-05-4105.
[115]  Kesanakurti, D.; Chetty, C.; Dinh, D.H.; Gujrati, M.; Rao, J.S. Role of MMP-2 in the regulation of IL-6/Stat3 survival signaling via interaction with alpha5beta1 integrin in glioma. Oncogene 2012, doi:10.1038/onc.2012.52.
[116]  Chahal, M.; Abdulkarim, B.; Xu, Y.; Guiot, M.C.; Easaw, J.C.; Stifani, N.; Sabri, S. O(6)-Methylguanine-DNA Methyltransferase Is a Novel Negative Effector of Invasion in Glioblastoma Multiforme. Mol. Cancer Ther. 2012, 11, 2440–2450, doi:10.1158/1535-7163.MCT-11-0977.
[117]  Qian, F.; Zhang, Z.C.; Wu, X.F.; Li, Y.P.; Xu, Q. Interaction between integrin alpha(5) and fibronectin is required for metastasis of B16F10 melanoma cells. Biochem. Biophys. Res. Commun. 2005, 333, 1269–1275, doi:10.1016/j.bbrc.2005.06.039.
[118]  McKenzie, J.A.; Liu, T.; Goodson, A.G.; Grossman, D. Survivin enhances motility of melanoma cells by supporting Akt activation and {alpha}5 integrin upregulation. Cancer Res. 2010, 70, 7927–7937, doi:10.1158/0008-5472.CAN-10-0194.
[119]  Arpaia, E.; Blaser, H.; Quintela-Fandino, M.; Duncan, G.; Leong, H.S.; Ablack, A.; Nambiar, S.C.; Lind, E.F.; Silvester, J.; Fleming, C.K.; et al. The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk. Oncogene 2012, 31, 884–896, doi:10.1038/onc.2011.288.
[120]  Beliveau, A.; Berube, M.; Rousseau, A.; Pelletier, G.; Guerin, S.L. Expression of integrin alpha5beta1 and MMPs associated with epithelioid morphology and malignancy of uveal melanoma. Invest. Ophthalmol. Vis. Sci. 2000, 41, 2363–2372.
[121]  Beliveau, A.; Berube, M.; Carrier, P.; Mercier, C.; Guerin, S.L. Tumorigenicity of the mixed spindle-epithelioid SP6. 5 and epithelioid TP17 uveal melanoma cell lines is differentially related to alpha5beta1 integrin expression. Invest. Ophthalmol. Vis. Sci. 2001, 42, 3058–3065.
[122]  Landreville, S.; Vigneault, F.; Bergeron, M.A.; Leclerc, S.; Gaudreault, M.; Morcos, M.; Mouriaux, F.; Salesse, C.; Guerin, S.L. Suppression of alpha5 gene expression is closely related to the tumorigenic properties of uveal melanoma cell lines. Pigment. Cell Melanoma Res. 2011, 24, 643–655, doi:10.1111/j.1755-148X.2011.00869.x.
[123]  Ramakrishnan, V.; Bhaskar, V.; Law, D.A.; Wong, M.H.; DuBridge, R.B.; Breinberg, D.; O'Hara, C.; Powers, D.B.; Liu, G.; Grove, J.; et al. Preclinical evaluation of an anti-alpha5beta1 integrin antibody as a novel anti-angiogenic agent. J. Exp. Ther. Oncol. 2006, 5, 273–286.
[124]  Bhaskar, V.; Fox, M.; Breinberg, D.; Wong, M.H.; Wales, P.E.; Rhodes, S.; DuBridge, R.B.; Ramakrishnan, V. Volociximab, a chimeric integrin alpha5beta1 antibody, inhibits the growth of VX2 tumors in rabbits. Invest. New Drugs 2008, 26, 7–12, doi:10.1007/s10637-007-9078-z.
[125]  Almokadem, S.; Belani, C.P. Volociximab in cancer. Expert Opin. Biol. Ther. 2011, 12, 251–257, doi:10.1517/14712598.2012.646985.
[126]  Besse, B.; Tsao, L.C.; Chao, D.T.; Fang, Y.; Soria, J.C.; Almokadem, S.; Belani, C.P. Phase Ib safety and pharmacokinetic study of volociximab, an anti-alpha5beta1 integrin antibody, in combination with carboplatin and paclitaxel in advanced non-small-cell lung cancer. Ann. Oncol. 2012, doi:10.1093/annonc/mds281.
[127]  Ricart, A.D.; Tolcher, A.W.; Liu, G.; Holen, K.; Schwartz, G.; Albertini, M.; Weiss, G.; Yazji, S.; Ng, C.; Wilding, G. Volociximab, a chimeric monoclonal antibody that specifically binds alpha5beta1 integrin: A phase I, pharmacokinetic, and biological correlative study. Clin. Cancer Res. 2008, 14, 7924–7929.
[128]  Bell-McGuinn, K.M.; Matthews, C.M.; Ho, S.N.; Barve, M.; Gilbert, L.; Penson, R.T.; Lengyel, E.; Palaparthy, R.; Gilder, K.; Vassos, A.; et al. A phase II, single-arm study of the anti-alpha5beta1 integrin antibody volociximab as monotherapy in patients with platinum-resistant advanced epithelial ovarian or primary peritoneal cancer. Gynecol. Oncol. 2011, 121, 273–279, doi:10.1016/j.ygyno.2010.12.362.
[129]  Yazji, S.; Bukowski, R.; Kondagunta, V.; Figlin, R. Final results from phase II study of volociximab, an α5β1 anti-integrin antibody, in refractory or relapsed metastatic clear cell renal cell carcinoma (mCCRCC). J. Clin. Oncol. 2007, 25. Abstract 5094.
[130]  Li, G.; Zhang, L.; Chen, E.; Wang, J.; Jiang, X.; Chen, J.H.; Wickman, G.; Amundson, K.; Bergqvist, S.; Zobel, J.; et al. Dual functional monoclonal antibody PF-04605412 targets integrin alpha5beta1 and elicits potent antibody-dependent cellular cytotoxicity. Cancer Res. 2010, 70, 10243–10254.
[131]  Smallheer, J.M.; Weigelt, C.A.; Woerner, F.J.; Wells, J.S.; Daneker, W.F.; Mousa, S.A.; Wexler, R.R.; Jadhav, P.K. Synthesis and biological evaluation of nonpeptide integrin antagonists containing spirocyclic scaffolds. Bioorg. Med. Chem. Lett. 2004, 14, 383–387.
[132]  Marinelli, L.; Meyer, A.; Heckmann, D.; Lavecchia, A.; Novellino, E.; Kessler, H. Ligand binding analysis for human alpha5beta1 integrin: Strategies for designing new alpha5beta1 integrin antagonists. J. Med. Chem. 2005, 48, 4204–4207, doi:10.1021/jm040224i.
[133]  Heckmann, D.; Meyer, A.; Marinelli, L.; Zahn, G.; Stragies, R.; Kessler, H. Probing integrin selectivity: Rational design of highly active and selective ligands for the alpha5beta1 and alphavbeta3 integrin receptor. Angew. Chem. Int. Ed. Engl. 2007, 46, 3571–3574.
[134]  Heckmann, D.; Meyer, A.; Laufer, B.; Zahn, G.; Stragies, R.; Kessler, H. Rational design of highly active and selective ligands for the alpha5beta1 integrin receptor. Chembiochem 2008, 9, 1397–1407, doi:10.1002/cbic.200800045.
[135]  Meyer, A.; Auernheimer, J.; Modlinger, A.; Kessler, H. Targeting RGD recognizing integrins: Drug development, biomaterial research, tumor imaging and targeting. Curr. Pharm. Des. 2006, 12, 2723–2747, doi:10.2174/138161206777947740.
[136]  Stragies, R.; Osterkamp, F.; Zischinsky, G.; Vossmeyer, D.; Kalkhof, H.; Reimer, U.; Zahn, G. Design and synthesis of a new class of selective integrin alpha5beta1 antagonists. J. Med. Chem. 2007, 50, 3786–3794, doi:10.1021/jm070002v.
[137]  Umeda, N.; Kachi, S.; Akiyama, H.; Zahn, G.; Vossmeyer, D.; Stragies, R.; Campochiaro, P.A. Suppression and regression of choroidal neovascularization by systemic administration of an alpha5beta1 integrin antagonist. Mol. Pharmacol. 2006, 69, 1820–1828, doi:10.1124/mol.105.020941.
[138]  Muether, P.S.; Dell, S.; Kociok, N.; Zahn, G.; Stragies, R.; Vossmeyer, D.; Joussen, A.M. The role of integrin alpha5beta1 in the regulation of corneal neovascularization. Exp. Eye Res. 2007, 85, 356–365, doi:10.1016/j.exer.2007.06.004.
[139]  Zahn, G.; Vossmeyer, D.; Stragies, R.; Wills, M.; Wong, C.G.; Loffler, K.U.; Adamis, A.P.; Knolle, J. Preclinical evaluation of the novel small-molecule integrin alpha5beta1 inhibitor JSM6427 in monkey and rabbit models of choroidal neovascularization. Arch. Ophthalmol. 2009, 127, 1329–1335, doi:10.1001/archophthalmol.2009.265.
[140]  Zahn, G.; Volk, K.; Lewis, G.P.; Vossmeyer, D.; Stragies, R.; Heier, J.S.; Daniel, P.E., Jr.; Adamis, A.P.; Chapin, E.A.; Fisher, S.K.; et al. Assessment of the integrin alpha5beta1 antagonist JSM6427 in proliferative vitreoretinopathy using in vitro assays and a rabbit model of retinal detachment. Invest. Ophthalmol. Vis. Sci. 2010, 51, 1028–1035, doi:10.1167/iovs.09-3575.
[141]  Okazaki, T.; Ni, A.; Ayeni, O.A.; Baluk, P.; Yao, L.C.; Vossmeyer, D.; Zischinsky, G.; Zahn, G.; Knolle, J.; Christner, C.; McDonald, D.M. alpha5beta1 Integrin blockade inhibits lymphangiogenesis in airway inflammation. Am. J. Pathol. 2009, 174, 2378–2387, doi:10.2353/ajpath.2009.080942.
[142]  Zischinsky, G.; Osterkamp, F.; Vossmeyer, D.; Zahn, G.; Scharn, D.; Zwintscher, A.; Stragies, R. SAR of N-phenyl piperidine based oral integrin alpha5beta1 antagonists. Bioorg. Med. Chem. Lett. 2010, 20, 65–68.
[143]  Zischinsky, G.; Osterkamp, F.; Vossmeyer, D.; Zahn, G.; Scharn, D.; Zwintscher, A.; Stragies, R. Discovery of orally available integrin alpha5beta1 antagonists. Bioorg. Med. Chem. Lett. 2010, 20, 380–382, doi:10.1016/j.bmcl.2009.10.073.
[144]  Delouvrie, B.; Al-Kadhimi, K.; Arnould, J.C.; Barry, S.T.; Cross, D.A.; Didelot, M.; Gavine, P.R.; Germain, H.; Harris, C.S.; Hughes, A.M.; et al. Structure-activity relationship of a series of non peptidic RGD integrin antagonists targeting alpha5beta1: Part 1. Bioorg. Med. Chem. Lett. 2012, 22, 4111–4116.
[145]  Delouvrie, B.; Al-Kadhimi, K.; Arnould, J.C.; Barry, S.T.; Cross, D.A.; Didelot, M.; Gavine, P.R.; Germain, H.; Harris, C.S.; Hughes, A.M.; et al. Structure-activity relationship of a series of non peptidic RGD integrin antagonists targeting alpha5beta1: Part 2. Bioorg. Med. Chem. Lett. 2012, 22, 4117–4121.
[146]  Livant, D.L.; Brabec, R.K.; Pienta, K.J.; Allen, D.L.; Kurachi, K.; Markwart, S.; Upadhyaya, A. Anti-invasive, antitumorigenic, and antimetastatic activities of the PHSCN sequence in prostate carcinoma. Cancer Res. 2000, 60, 309–320.
[147]  Livant, D.L.; Brabec, R.K.; Kurachi, K.; Allen, D.L.; Wu, Y.; Haaseth, R.; Andrews, P.; Ethier, S.P.; Markwart, S. The PHSRN sequence induces extracellular matrix invasion and accelerates wound healing in obese diabetic mice. J. Clin. Invest. 2000, 105, 1537–1545, doi:10.1172/JCI8527.
[148]  Zeng, Z.Z.; Yao, H.; Staszewski, E.D.; Rockwood, K.F.; Markwart, S.M.; Fay, K.S.; Spalding, A.C.; Livant, D.L. alpha(5)beta(1) Integrin Ligand PHSRN Induces Invasion and alpha(5) mRNA in Endothelial Cells to Stimulate Angiogenesis. Transl. Oncol. 2009, 2, 8–20.
[149]  Van Golen, K.L.; Bao, L.; Brewer, G.J.; Pienta, K.J.; Kamradt, J.M.; Livant, D.L.; Merajver, S.D. Suppression of tumor recurrence and metastasis by a combination of the PHSCN sequence and the antiangiogenic compound tetrathiomolybdate in prostate carcinoma. Neoplasia 2002, 4, 373–379, doi:10.1038/sj.neo.7900258.
[150]  Stoeltzing, O.; Liu, W.; Reinmuth, N.; Fan, F.; Parry, G.C.; Parikh, A.A.; McCarty, M.F.; Bucana, C.D.; Mazar, A.P.; Ellis, L.M. Inhibition of integrin alpha5beta1 function with a small peptide (ATN-161) plus continuous 5-FU infusion reduces colorectal liver metastases and improves survival in mice. Int. J. Cancer 2003, 104, 496–503, doi:10.1002/ijc.10958.
[151]  Khalili, P.; Arakelian, A.; Chen, G.; Plunkett, M.L.; Beck, I.; Parry, G.C.; Donate, F.; Shaw, D.E.; Mazar, A.P.; Rabbani, S.A. A non-RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo. Mol. Cancer Ther. 2006, 5, 2271–2280, doi:10.1158/1535-7163.MCT-06-0100.
[152]  Wang, W.; Wang, F.; Lu, F.; Xu, S.; Hu, W.; Huang, J.; Gu, Q.; Sun, X. The antiangiogenic effects of integrin alpha5beta1 inhibitor (ATN-161) in vitro and in vivo. Invest. Ophthalmol. Vis. Sci. 2011, 52, 7213–7220, doi:10.1167/iovs.10-7097.
[153]  Cianfrocca, M.E.; Kimmel, K.A.; Gallo, J.; Cardoso, T.; Brown, M.M.; Hudes, G.; Lewis, N.; Weiner, L.; Lam, G.N.; Brown, S.C.; et al. Phase 1 trial of the antiangiogenic peptide ATN-161 (Ac-PHSCN-NH(2)), a beta integrin antagonist, in patients with solid tumours. Br. J. Cancer 2006, 94, 1621–1626.
[154]  Yao, H.; Veine, D.M.; Zeng, Z.Z.; Fay, K.S.; Staszewski, E.D.; Livant, D.L. Increased potency of the PHSCN dendrimer as an inhibitor of human prostate cancer cell invasion, extravasation, and lung colony formation. Clin. Exp. Metastasis 2010, 27, 173–184, doi:10.1007/s10585-010-9316-1.
[155]  Yao, H.; Veine, D.M.; Fay, K.S.; Staszewski, E.D.; Zeng, Z.Z.; Livant, D.L. The PHSCN dendrimer as a more potent inhibitor of human breast cancer cell invasion, extravasation, and lung colony formation. Breast Cancer Res. Treat. 2011, 125, 363–175.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413