全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Cells  2013 

CD8+ T Lymphocyte Epitopes From The Herpes Simplex Virus Type 2 ICP27, VP22 and VP13/14 Proteins To Facilitate Vaccine Design And Characterization

DOI: 10.3390/cells2010019

Keywords: HSV-2, CD8+ epitope, vaccine, infection

Full-Text   Cite this paper   Add to My Lib

Abstract:

CD8+ T cells have the potential to control HSV-2 infection. However, limited information has been available on CD8+ T cell epitopes or the functionality of antigen specific T cells during infection or following immunization with experimental vaccines. Peptide panels from HSV-2 proteins ICP27, VP22 and VP13/14 were selected from in silico predictions of binding to human HLA-A*0201 and mouse H-2Kd, Ld and Dd molecules. Nine previously uncharacterized CD8+ T cell epitopes were identified from HSV-2 infected BALB/c mice. HSV-2 specific peptide sequences stabilized HLA-A*02 surface expression with intermediate or high affinity binding. Peptide specific CD8+ human T cell lines from peripheral blood lymphocytes were generated from a HLA-A*02+ donor. High frequencies of peptide specific CD8+ T cell responses were elicited in mice by DNA vaccination with ICP27, VP22 and VP13/14, as demonstrated by CD107a mobilization. Vaccine driven T cell responses displayed a more focused immune response than those induced by viral infection. Furthermore, vaccination with ICP27 reduced viral shedding and reduced the clinical impact of disease. In conclusion, this study describes novel HSV-2 epitopes eliciting strong CD8+ T cell responses that may facilitate epitope based vaccine design and aid immunomonitoring of antigen specific T cell frequencies in preclinical and clinical settings.

References

[1]  Looker, K.J.; Garnett, G.P.; Schmid, G.P. An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection. Bull. World Health Organ. 2008, 86, 805–812.
[2]  Senior, K. Herpes simplex type 2 infects one in ten globally. Lancet Infectious Dis. 2009, 9, 15–15, doi:10.1016/S1473-3099(08)70300-1.
[3]  Corey, L.; Langenberg, A.G.M.; Ashley, R.; Sekulovich, R.E.; Izu, A.E.; Douglas, J.M., Jr.; Handsfield, H.H.; Warren, T.; Marr, L.; Tyring, S.; DiCarlo, R.; Adimora, A.A.; Leone, P.; Dekker, C.L.; Burke, R.L.; Leong, W.P.; Straus, S.E. Recombinant Glycoprotein Vaccine for the Prevention of Genital HSV-2 Infection: Two Randomized Controlled Trials. JAMA 1999, 282, 331–340.
[4]  Langenberg, A.G.; Burke, R.L.; Adair, S.F.; Sekulovich, R.; Tigges, M.; Dekker, C.L.; Corey, L. A recombinant glycoprotein vaccine for herpes simplex virus type 2: Safety and immunogenicity [corrected]. Ann. Intern. Med. 1995, 122, 889–898.
[5]  Bernstein, D.I.; Aoki, F.Y.; Tyring, S.K.; Stanberry, L.R.; St-Pierre, C.; Shafran, S.D.; Leroux-Roels, G.; Van Herck, K.; Bollaerts, A.; Dubin, G. Safety and immunogenicity of glycoprotein D-adjuvant genital herpes vaccine. Clin Infect. Dis 2005, 40, 1271–1281, doi:10.1086/429240.
[6]  Stanberry, L.R.; Spruance, S.L.; Cunningham, A.L.; Bernstein, D.I.; Mindel, A.; Sacks, S.; Tyring, S.; Aoki, F.Y.; Slaoui, M.; Denis, M.; Vandepapeliere, P.; Dubin, G. The GlaxoSmithKline Herpes Vaccine Efficacy Study Group. Glycoprotein-D-Adjuvant Vaccine to Prevent Genital Herpes. N. Engl. J. Med. 2002, 347, 1652–1661, doi:10.1056/NEJMoa011915.
[7]  Hoshino, Y.; Pesnicak, L.; Dowdell, K.C.; Lacayo, J.; Dudek, T.; Knipe, D.M.; Straus, S.E.; Cohen, J.I. Comparison of immunogenicity and protective efficacy of genital herpes vaccine candidates herpes simplex virus 2 dl5–29 and dl5–29–41L in mice and guinea pigs. Vaccine 2008, 26, 4034–4040, doi:10.1016/j.vaccine.2008.05.022.
[8]  Muller, W.J.; Dong, L.; Vilalta, A.; Byrd, B.; Wilhelm, K.M.; McClurkan, C.L.; Margalith, M.; Liu, C.; Kaslow, D.; Sidney, J.; Sette, A.; Koelle, D.M. Herpes simplex virus type 2 tegument proteins contain subdominant T-cell epitopes detectable in BALB/c mice after DNA immunization and infection. J. Gen. Virol. 2009, 90, 1153–1163, doi:10.1099/vir.0.008771-0.
[9]  Zhang, X.; Chentoufi, A.A.; Dasgupta, G.; Nesburn, A.B.; Wu, M.; Zhu, X.; Carpenter, D.; Wechsler, S.L.; You, S.; BenMohamed, L. A genital tract peptide epitope vaccine targeting TLR-2 efficiently induces local and systemic CD8+ T cells and protects against herpes simplex virus type 2 challenge. Mucosal. Immunol. 2009, 2, 129–143, doi:10.1038/mi.2008.81.
[10]  Wakim, L.M.; Jones, C.M.; Gebhardt, T.; Preston, C.M.; Carbone, F.R. CD8+ T-cell attenuation of cutaneous herpes simplex virus infection reduces the average viral copy number of the ensuing latent infection. Immunol. Cell. Biol. 2008, 86, 666–675, doi:10.1038/icb.2008.47.
[11]  Khanna, K.M.; Bonneau, R.H.; Kinchington, P.R.; Hendricks, R.L. Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity 2003, 18, 593–603, doi:10.1016/S1074-7613(03)00112-2.
[12]  Zhu, J.; Koelle, D.M.; Cao, J.; Vazquez, J.; Huang, M.L.; Hladik, F.; Wald, A.; Corey, L. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J. Exp. Med. 2007, 204, 595–603, doi:10.1084/jem.20061792.
[13]  Dobbs, M.E.; Strasser, J.E.; Chu, C.F.; Chalk, C.; Milligan, G.N. Clearance of herpes simplex virus type 2 by CD8+ T cells requires gamma interferon and either perforin- or Fas-mediated cytolytic mechanisms. J. Virol. 2005, 79, 14546–14554, doi:10.1128/JVI.79.23.14546-14554.2005.
[14]  Knickelbein, J.E.; Khanna, K.M.; Yee, M.B.; Baty, C.J.; Kinchington, P.R.; Hendricks, R.L. Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Science 2008, 322, 268–271, doi:10.1126/science.1164164.
[15]  Hoshino, Y.; Pesnicak, L.; Cohen, J.I.; Straus, S.E. Rates of reactivation of latent herpes simplex virus from mouse trigeminal ganglia ex vivo correlate directly with viral load and inversely with number of infiltrating CD8+ T cells. J. Virol. 2007, 81, 8157–8164, doi:10.1128/JVI.00474-07.
[16]  Hosken, N.; McGowan, P.; Meier, A.; Koelle, D.M.; Sleath, P.; Wagener, F.; Elliott, M.; Grabstein, K.; Posavad, C.; Corey, L. Diversity of the CD8+ T-Cell Response to Herpes Simplex Virus Type 2 Proteins among Persons with Genital Herpes. J. Virol. 2006, 80, 5509–5515, doi:10.1128/JVI.02659-05.
[17]  Braun, R.; Payne, L.; Dong, L. Characterization of the IFN-gamma T-cell responses to immediate early antigens in humans with genital herpes. Virol. J. 2006, 3, 54, doi:10.1186/1743-422X-3-54.
[18]  Haynes, J.R.; Arrington, J.; Dong, L.; Braun, R.P.; Payne, L.G. Potent protective cellular immune responses generated by a DNA vaccine encoding HSV-2 ICP27 and the E. coli heat labile enterotoxin. Vaccine 2006, 24, 5016–5026, doi:10.1016/j.vaccine.2006.03.046.
[19]  Kim, T.W.; Hung, C.F.; Kim, J.W.; Juang, J.; Chen, P.J.; He, L.; Boyd, D.A.; Wu, T.C. Vaccination with a DNA vaccine encoding herpes simplex virus type 1 VP22 linked to antigen generates long-term antigen-specific CD8-positive memory T cells and protective immunity. Hum. Gene Ther. 2004, 15, 167–177.
[20]  Koelle, D.M.; Chen, H.B.; McClurkan, C.M.; Petersdorf, E.W. Herpes simplex virus type 2-specific CD8 cytotoxic T lymphocyte cross-reactivity against prevalent HLA class I alleles. Blood 2002, 99, 3844–3847, doi:10.1182/blood.V99.10.3844.
[21]  Koelle, D.M.; Liu, Z.; McClurkan, C.L.; Cevallos, R.C.; Vieira, J.; Hosken, N.A.; Meseda, C.A.; Snow, D.C.; Wald, A.; Corey, L. Immunodominance among herpes simplex virus-specific CD8 T cells expressing a tissue-specific homing receptor. Proc. Natl. Acad. Sci. USA 2003, 100, 12899–12904.
[22]  Koelle, D.M.; Chen, H.B.; Gavin, M.A.; Wald, A.; Kwok, W.W.; Corey, L. CD8 CTL from genital herpes simplex lesions: recognition of viral tegument and immediate early proteins and lysis of infected cutaneous cells. J. Immunol. 2001, 166, 4049–4058.
[23]  Sharpe, M.; Lynch, D.; Topham, S.; Major, D.; Wood, J.; Loudon, P. Protection of mice from H5N1 influenza challenge by prophylactic DNA vaccination using particle mediated epidermal delivery. Vaccine 2007, 25, 6392–6398, doi:10.1016/j.vaccine.2007.06.009.
[24]  Vita, R.; Zarebski, L.; Greenbaum, J.A.; Emami, H.; Hoof, I.; Salimi, N.; Damle, R.; Sette, A.; Peters, B. The immune epitope database 2.0. Nucleic Acids Res. 2010, 38, D854–D862, doi:10.1093/nar/gkp1004.
[25]  Rao, V.P.; Balasa, B.; Carayanniotis, G. Mapping of thyroglobulin epitopes: presentation of a 9mer pathogenic peptide by different mouse MHC class II isotypes. Immunogenetics 1994, 40, 352–359, doi:10.1007/BF01246676.
[26]  Suri, A.; Lovitch, S.B.; Unanue, E.R. The wide diversity and complexity of peptides bound to class II MHC molecules. Curr. Opin. Immunol. 2006, 18, 70–77.
[27]  Wang, Y.D.; Sin, W.Y.; Xu, G.B.; Yang, H.H.; Wong, T.Y.; Pang, X.W.; He, X.Y.; Zhang, H.G.; Ng, J.N.; Cheng, C.S.; Yu, J.; Meng, L.; Yang, R.F.; Lai, S.T.; Guo, Z.H.; Xie, Y.; Chen, W.F. T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus spike protein elicit a specific T-cell immune response in patients who recover from SARS. J. Virol. 2004, 78, 5612–5618.
[28]  Koelle, D.M.; Liu, Z.; McClurkan, C.M.; Topp, M.S.; Riddell, S.R.; Pamer, E.G.; Johnson, A.S.; Wald, A.; Corey, L. Expression of cutaneous lymphocyte-associated antigen by CD8(+) T cells specific for a skin-tropic virus. J. Clin. Invest. 2002, 110, 537–548.
[29]  Posavad, C.M.; Remington, M.; Mueller, D.E.; Zhao, L.; Magaret, A.S.; Wald, A.; Corey, L. Detailed Characterization of T Cell Responses to Herpes Simplex Virus-2 in Immune Seronegative Persons. J. Immunol. 2010, 184, 3250–3259, doi:10.4049/jimmunol.0900722.
[30]  Rowland-Jones, S.; Sutton, J.; Ariyoshi, K.; Dong, T.; Gotch, F.; McAdam, S.; Whitby, D.; Sabally, S.; Gallimore, A.; Corrah, T.; Takiguchi, M.; Schultz, T.; McMichael, A.; Whittle, H. HIV-specific cytotoxic T-cells in HIV-exposed but uninfected Gambian women. Nat. Med. 1995, 1, 59–64, doi:10.1038/nm0195-59.
[31]  Erickson, A.L.; Willberg, C.B.; McMahan, V.; Liu, A.; Buchbinder, S.P.; Grohskopf, L.A.; Grant, R.M.; Nixon, D.F. Potentially Exposed but Uninfected Individuals Produce Cytotoxic and Polyfunctional Human Immunodeficiency Virus Type 1-Specific CD8+ T-Cell Responses Which Can Be Defined to the Epitope Level. Clin. Vaccine Immunol. 2008, 15, 1745–1748, doi:10.1128/CVI.00247-08.
[32]  Mo, A.; Musselli, C.; Chen, H.; Pappas, J.; Leclair, K.; Liu, A.; Chicz, R.M.; Truneh, A.; Monks, S.; Levey, D.L.; Srivastava, P.K. A heat shock protein based polyvalent vaccine targeting HSV-2: CD4(+) and CD8(+) cellular immunity and protective efficacy. Vaccine 2011, 29, 8530–8541, doi:10.1016/j.vaccine.2011.07.011.
[33]  Wald, A.; Koelle, D.M.; Fife, K.; Warren, T.; Leclair, K.; Chicz, R.M.; Monks, S.; Levey, D.L.; Musselli, C.; Srivastava, P.K. Safety and immunogenicity of long HSV-2 peptides complexed with rhHsc70 in HSV-2 seropositive persons. Vaccine 2011, 29, 8520–8529.
[34]  Loudon, P.T.; Yager, E.J.; Lynch, D.T.; Narendran, A.; Stagnar, C.; Franchini, A.M.; Fuller, J.T.; White, P.A.; Nyuandi, J.; Wiley, C.A.; Murphey-Corb, M.; Fuller, D.H. GM-CSF Increases Mucosal and Systemic Immunogenicity of an H1N1 Influenza DNA Vaccine Administered into the Epidermis of Non-Human Primates. PLoS One 2010, 5, e11021.
[35]  Jones, S.; Evans, K.; McElwaine-Johnn, H.; Sharpe, M.; Oxford, J.; Lambkin-Williams, R.; Mant, T.; Nolan, A.; Zambon, M.; Ellis, J.; Beadle, J.; Loudon, P.T. DNA vaccination protects against an influenza challenge in a double-blind randomised placebo-controlled phase 1b clinical trial. Vaccine 2009, 27, 2506–2512.
[36]  Winstone, N.; Guimaraes-Walker, A.; Roberts, J.; Brown, D.; Loach, V.; Goonetilleke, N.; Hanke, T.; McMichael, A.J. Increased detection of proliferating, polyfunctional, HIV-1-specific T cells in DNA-modified vaccinia virus Ankara-vaccinated human volunteers by cultured IFN-gamma ELISPOT assay. Eur. J. Immunol. 2009, 39, 975–985, doi:10.1002/eji.200839167.
[37]  Nakanishi, Y.; Lu, B.; Gerard, C.; Iwasaki, A. CD8+ T lymphocyte mobilization to virus-infected tissue requires CD4+ T-cell help. Nature 2009, 462, 510–513.
[38]  Oseroff, C.; Peters, B.; Pasquetto, V.; Moutaftsi, M.; Sidney, J.; Panchanathan, V.; Tscharke, D.C.; Maillere, B.; Grey, H.; Sette, A. Dissociation between Epitope Hierarchy and Immunoprevalence in CD8 Responses to Vaccinia Virus Western Reserve. J. Immunol. 2008, 180, 7193–7202.
[39]  Siddiqui, S.; Tarrab, E.; Lamarre, A.; Basta, S. Altered immunodominance hierarchies of CD8+ T cells in the spleen after infection at different sites is contingent on high virus inoculum. Microbes Infection 2010, 12, 324–330, doi:10.1016/j.micinf.2010.01.004.
[40]  Tscharke, D.C.; Karupiah, G.; Zhou, J.; Palmore, T.; Irvine, K.R.; Haeryfar, S.M.M.; Williams, S.; Sidney, J.; Sette, A.; Bennink, J.R.; Yewdell, J.W. Identification of poxvirus CD8+ T cell determinants to enable rational design and characterization of smallpox vaccines. J. Exp. Med. 2005, 201, 95–104.
[41]  Chen, J.-L.; Dunbar, P.R.; Gileadi, U.; Jager, E.; Gnjatic, S.; Nagata, Y.; Stockert, E.; Panicali, D.L.; Chen, Y.-T.; Knuth, A.; Old, L.J.; Cerundolo, V. Identification of NY-ESO-1 Peptide Analogues Capable of Improved Stimulation of Tumor-Reactive CTL. J. Immunol. 2000, 165, 948–955.
[42]  Morrison, J.; Elvin, J.; Latron, F.; Gotch, F.; Moots, R.; Strominger, J.L.; McMichael, A. Identification of the nonamer peptide from influenza A matrix protein and the role of pockets of HLA-A2 in its recognition by cytotoxic T lymphocytes. Eur. J. Immunol. 1992, 22, 903–907.
[43]  Betts, M.R.; Brenchley, J.M.; Price, D.A.; De Rosa, S.C.; Douek, D.C.; Roederer, M.; Koup, R.A. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Meth. 2003, 281, 65–78, doi:10.1016/S0022-1759(03)00265-5.
[44]  Wolint, P.; Betts, M.R.; Koup, R.A.; Oxenius, A. Immediate Cytotoxicity But Not Degranulation Distinguishes Effector and Memory Subsets of CD8+ T Cells. J. Exp. Med. 2004, 199, 925–936, doi:10.1084/jem.20031799.
[45]  Smith, C.L.; Dunbar, P.R.; Mirza, F.; Palmowski, M.J.; Shepherd, D.; Gilbert, S.C.; Coulie, P.; Schneider, J.; Hoffman, E.; Hawkins, R.; Harris, A.L.; Cerundolo, V. Recombinant modified vaccinia Ankara primes functionally activated CTL specific for a melanoma tumor antigen epitope in melanoma patients with a high risk of disease recurrence. Int. J. Cancer 2005, 113, 259–266, doi:10.1002/ijc.20569.
[46]  Roberts, L.K.; Barr, L.J.; Fuller, D.H.; McMahon, C.W.; Leese, P.T.; Jones, S. Clinical safety and efficacy of a powdered Hepatitis B nucleic acid vaccine delivered to the epidermis by a commercial prototype device. Vaccine 2005, 23, 4867–4878.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133