全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Cancers  2013 

Epigenetic Modulating Agents as a New Therapeutic Approach in Multiple Myeloma

DOI: 10.3390/cancers5020430

Keywords: multiple myeloma, epigenetics, histone deacetylase inhibitor, DNA-methyltransferase inhibitor

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multiple myeloma (MM) is an incurable B-cell malignancy. Therefore, new targets and drugs are urgently needed to improve patient outcome. Epigenetic aberrations play a crucial role in development and progression in cancer, including MM. To target these aberrations, epigenetic modulating agents, such as DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi), are under intense investigation in solid and hematological cancers. A clinical benefit of the use of these agents as single agents and in combination regimens has been suggested based on numerous studies in pre-clinical tumor models, including MM models. The mechanisms of action are not yet fully understood but appear to involve a combination of true epigenetic changes and cytotoxic actions. In addition, the interactions with the BM niche are also affected by epigenetic modulating agents that will further determine the in vivo efficacy and thus patient outcome. A better understanding of the molecular events underlying the anti-tumor activity of the epigenetic drugs will lead to more rational drug combinations. This review focuses on the involvement of epigenetic changes in MM pathogenesis and how the use of DNMTi and HDACi affect the myeloma tumor itself and its interactions with the microenvironment.

References

[1]  Lemaire, M.; Deleu, S.; de Bruyne, E.; van Valckenborgh, E.; Menu, E.; Vanderkerken, K. The microenvironment and molecular biology of the multiple myeloma tumor. Adv. Cancer Res. 2012, 110, 19–42.
[2]  Bruyne, E.; Maes, K.; Deleu, S.; Valckenborgh, E.; Menu, E.; Broek, I.; Fraczek, J.; Grunsven, L.; Rogiers, V.; Jernberg-Wiklund, H.; et al. Epigenetic regulation of myeloma within its bone marrow microenvironment. In Advances in Biology and Therapy of Multiple Myeloma; Munshi, N.C., Anderson, K.C., Eds.; Springer: New York, NY, USA, 2013; pp. 255–282.
[3]  Becker, N. Epidemiology of multiple myeloma. Recent Results Cancer Res. 2011, 183, 25–35, doi:10.1007/978-3-540-85772-3_2.
[4]  Raab, M.S.; Podar, K.; Breitkreutz, I.; Richardson, P.G.; Anderson, K.C. Multiple myeloma. Lancet 2009, 374, 324–339.
[5]  Mahindra, A.; Hideshima, T.; Anderson, K.C. Multiple myeloma: Biology of the disease. Blood Rev. 2011, 24, S5–S11, doi:10.1016/S0268-960X(10)70003-5.
[6]  Landgren, O.; Kyle, R.A.; Pfeiffer, R.M.; Katzmann, J.A.; Caporaso, N.E.; Hayes, R.B.; Dispenzieri, A.; Kumar, S.; Clark, R.J.; Baris, D.; et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: A prospective study. Blood 2009, 113, 5412–5417, doi:10.1182/blood-2008-12-194241.
[7]  Weiss, B.M.; Abadie, J.; Verma, P.; Howard, R.S.; Kuehl, W.M. A monoclonal gammopathy precedes multiple myeloma in most patients. Blood 2009, 113, 5418–5422.
[8]  Kuehl, W.M.; Bergsagel, P.L. Molecular pathogenesis of multiple myeloma and its premalignant precursor. J. Clin. Invest. 2012, 122, 3456–3463, doi:10.1172/JCI61188.
[9]  Chng, W.J.; Glebov, O.; Bergsagel, P.L.; Kuehl, W.M. Genetic events in the pathogenesis of multiple myeloma. Best Pract. Res. Clin. Haematol. 2007, 20, 571–596, doi:10.1016/j.beha.2007.08.004.
[10]  Kumar, S.K.; Mikhael, J.R.; Buadi, F.K.; Dingli, D.; Dispenzieri, A.; Fonseca, R.; Gertz, M.A.; Greipp, P.R.; Hayman, S.R.; Kyle, R.A.; et al. Management of newly diagnosed symptomatic multiple myeloma: Updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines. Mayo Clin. Proc. 2009, 84, 1095–1110, doi:10.4065/mcp.2009.0603.
[11]  Munshi, N.C.; Anderson, K.C.; Bergsagel, P.L.; Shaughnessy, J.; Palumbo, A.; Durie, B.; Fonseca, R.; Stewart, A.K.; Harousseau, J.L.; Dimopoulos, M.; et al. Consensus recommendations for risk stratification in multiple myeloma: Report of the International Myeloma Workshop Consensus Panel 2. Blood 2012, 117, 4696–4700.
[12]  Rajkumar, S.V. Multiple myeloma: 2012 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2012, 87, 78–88.
[13]  Avet-Loiseau, H.; Malard, F.; Campion, L.; Magrangeas, F.; Sebban, C.; Lioure, B.; Decaux, O.; Lamy, T.; Legros, L.; Fuzibet, J.G.; et al. Translocation t(14;16) and multiple myeloma: Is it really an independent prognostic factor? Blood 2012, 117, 2009–2011.
[14]  Bird, J.M.; Owen, R.G.; D’Sa, S.; Snowden, J.A.; Pratt, G.; Ashcroft, J.; Yong, K.; Cook, G.; Feyler, S.; Davies, F.; et al. Guidelines for the diagnosis and management of multiple myeloma 2011. Br. J. Haematol. 2011, 154, 32–75.
[15]  Palumbo, A.; Bringhen, S.; Ludwig, H.; Dimopoulos, M.A.; Blade, J.; Mateos, M.V.; Rosinol, L.; Boccadoro, M.; Cavo, M.; Lokhorst, H.; et al. Personalized therapy in multiple myeloma according to patient age and vulnerability: A report of the European Myeloma Network (EMN). Blood 2011, 118, 4519–4529.
[16]  Roussel, M.; Facon, T.; Moreau, P.; Harousseau, J.L.; Attal, M. Firstline treatment and maintenance in newly diagnosed multiple myeloma patients. Recent Results Cancer Res. 2011, 183, 189–206.
[17]  Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis 2010, 31, 27–36.
[18]  Bestor, T.H. The DNA methyltransferases of mammals. Hum. Mol. Genet. 2000, 9, 2395–2402.
[19]  Chen, Z.X.; Riggs, A.D. DNA methylation and demethylation in mammals. J. Biol. Chem. 2011, 286, 18347–18353.
[20]  Kim, J.K.; Samaranayake, M.; Pradhan, S. Epigenetic mechanisms in mammals. Cell. Mol. Life Sci. 2009, 66, 596–612.
[21]  Galm, O.; Herman, J.G.; Baylin, S.B. The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev. 2006, 20, 1–13.
[22]  Antequera, F. Structure, function and evolution of CpG island promoters. Cell. Mol. Life Sci. 2003, 60, 1647–1658.
[23]  Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16, 6–21.
[24]  Deaton, A.M.; Bird, A. CpG islands and the regulation of transcription. Genes Dev. 2011, 25, 1010–1022.
[25]  Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13, 484–492.
[26]  Gardner, K.E.; Allis, C.D.; Strahl, B.D. Operating on chromatin, a colorful language where context matters. J. Mol. Biol. 2012, 409, 36–46.
[27]  Yun, M.; Wu, J.; Workman, J.L.; Li, B. Readers of histone modifications. Cell Res. 2011, 21, 564–578.
[28]  Selvi, R.B.; Kundu, T.K. Reversible acetylation of chromatin: Implication in regulation of gene expression, disease and therapeutics. Biotechnol. J. 2009, 4, 375–390.
[29]  Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 2011, 21, 381–395.
[30]  De Ruijter, A.J.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J. 2003, 370, 737–749.
[31]  Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M.L.; Rehman, M.; Walther, T.C.; Olsen, J.V.; Mann, M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325, 834–840.
[32]  Yang, X.J.; Seto, E. Lysine acetylation: Codified crosstalk with other posttranslational modifications. Mol. Cells 2008, 31, 449–461.
[33]  Bedford, M.T.; Clarke, S.G. Protein arginine methylation in mammals: Who, what, and why. Mol. Cells 2009, 33, 1–13.
[34]  Greer, E.L.; Shi, Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 2012, 13, 343–357.
[35]  Banerjee, T.; Chakravarti, D. A peek into the complex realm of histone phosphorylation. Mol. Cell. Biol. 2011, 31, 4858–4873.
[36]  Cook, P.J.; Ju, B.G.; Telese, F.; Wang, X.; Glass, C.K.; Rosenfeld, M.G. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 2009, 458, 591–596.
[37]  Xiao, A.; Li, H.; Shechter, D.; Ahn, S.H.; Fabrizio, L.A.; Erdjument-Bromage, H.; Ishibe-Murakami, S.; Wang, B.; Tempst, P.; Hofmann, K.; et al. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 2009, 457, 57–62.
[38]  Margueron, R.; Trojer, P.; Reinberg, D. The key to development: Interpreting the histone code? Curr. Opin. Genet. Dev. 2005, 15, 163–176, doi:10.1016/j.gde.2005.01.005.
[39]  Kouzarides, T. Chromatin modifications and their function. Cell 2007, 128, 693–705, doi:10.1016/j.cell.2007.02.005.
[40]  Cedar, H.; Bergman, Y. Linking DNA methylation and histone modification: Patterns and paradigms. Nat. Rev. Genet. 2009, 10, 295–304, doi:10.1038/nrg2540.
[41]  Fuks, F. DNA methylation and histone modifications: Teaming up to silence genes. Curr. Opin. Genet. Dev. 2005, 15, 490–495, doi:10.1016/j.gde.2005.08.002.
[42]  Blackledge, N.P.; Klose, R. CpG island chromatin: A platform for gene regulation. Epigenetics 2011, 6, 147–152, doi:10.4161/epi.6.2.13640.
[43]  Jones, P.A.; Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 2002, 3, 415–428.
[44]  Smith, E.M.; Boyd, K.; Davies, F.E. The potential role of epigenetic therapy in multiple myeloma. Br. J. Haematol. 2009, 148, 702–713, doi:10.1111/j.1365-2141.2009.07976.x.
[45]  Bollati, V.; Fabris, S.; Pegoraro, V.; Ronchetti, D.; Mosca, L.; Deliliers, G.L.; Motta, V.; Bertazzi, P.A.; Baccarelli, A.; Neri, A. Differential repetitive DNA methylation in multiple myeloma molecular subgroups. Carcinogenesis 2009, 30, 1330–1335, doi:10.1093/carcin/bgp149.
[46]  Aoki, Y.; Nojima, M.; Suzuki, H.; Yasui, H.; Maruyama, R.; Yamamoto, E.; Ashida, M.; Itagaki, M.; Asaoku, H.; Ikeda, H.; et al. Genomic vulnerability to LINE-1 hypomethylation is a potential determinant of the clinicogenetic features of multiple myeloma. Genome Med. 2012, 4, 101, doi:10.1186/gm402.
[47]  Walker, B.A.; Wardell, C.P.; Chiecchio, L.; Smith, E.M.; Boyd, K.D.; Neri, A.; Davies, F.E.; Ross, F.M.; Morgan, G.J. Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma. Blood 2011, 117, 553–562, doi:10.1182/blood-2010-04-279539.
[48]  Salhia, B.; Baker, A.; Ahmann, G.; Auclair, D.; Fonseca, R.; Carpten, J. DNA methylation analysis determines the high frequency of genic hypomethylation and low frequency of hypermethylation events in plasma cell tumors. Cancer Res. 2010, 70, 6934–6944, doi:10.1158/0008-5472.CAN-10-0282.
[49]  Sharma, A.; Heuck, C.J.; Fazzari, M.J.; Mehta, J.; Singhal, S.; Greally, J.M.; Verma, A. DNA methylation alterations in multiple myeloma as a model for epigenetic changes in cancer. Wiley Interdiscip. Rev. Syst. Biol. Med. 2010, 2, 654–669, doi:10.1002/wsbm.89.
[50]  Heller, G.; Schmidt, W.M.; Ziegler, B.; Holzer, S.; Mullauer, L.; Bilban, M.; Zielinski, C.C.; Drach, J.; Zochbauer-Muller, S. Genome-wide transcriptional response to 5-aza-2'-deoxycytidine and trichostatin a in multiple myeloma cells. Cancer Res. 2008, 68, 44–54, doi:10.1158/0008-5472.CAN-07-2531.
[51]  Braggio, E.; Maiolino, A.; Gouveia, M.E.; Magalhaes, R.; Souto Filho, J.T.; Garnica, M.; Nucci, M.; Renault, I.Z. Methylation status of nine tumor suppressor genes in multiple myeloma. Int. J. Hematol. 2010, 91, 87–96.
[52]  Hatzimichael, E.; Dasoula, A.; Shah, R.; Syed, N.; Papoudou-Bai, A.; Coley, H.M.; Dranitsaris, G.; Bourantas, K.L.; Stebbing, J.; Crook, T. The prolyl-hydroxylase EGLN3 and not EGLN1 is inactivated by methylation in plasma cell neoplasia. Eur. J. Haematol. 2010, 84, 47–51.
[53]  Song, Y.F.; Xu, R.; Zhang, X.H.; Chen, B.B.; Chen, Q.; Chen, Y.M.; Xie, Y. High-frequency promoter hypermethylation of the deleted in liver cancer-1 gene in multiple myeloma. J. Clin. Pathol. 2006, 59, 947–951.
[54]  Seidl, S.; Ackermann, J.; Kaufmann, H.; Keck, A.; Nosslinger, T.; Zielinski, C.C.; Drach, J.; Zochbauer-Muller, S. DNA-methylation analysis identifies the E-cadherin gene as a potential marker of disease progression in patients with monoclonal gammopathies. Cancer 2004, 100, 2598–2606.
[55]  De Carvalho, F.; Colleoni, G.W.; Almeida, M.S.; Carvalho, A.L.; Vettore, A.L. TGFbetaR2 aberrant methylation is a potential prognostic marker and therapeutic target in multiple myeloma. Int. J. Cancer 2009, 125, 1985–1991.
[56]  De Bruyne, E.; Bos, T.J.; Asosingh, K.; vande Broek, I.; Menu, E.; van Valckenborgh, E.; Atadja, P.; Coiteux, V.; Leleu, X.; Thielemans, K.; et al. Epigenetic silencing of the tetraspanin CD9 during disease progression in multiple myeloma cells and correlation with survival. Clin. Cancer Res. 2008, 14, 2918–2926.
[57]  Galm, O.; Wilop, S.; Reichelt, J.; Jost, E.; Gehbauer, G.; Herman, J.G.; Osieka, R. DNA methylation changes in multiple myeloma. Leukemia 2004, 18, 1687–1692.
[58]  Stanganelli, C.; Arbelbide, J.; Fantl, D.B.; Corrado, C.; Slavutsky, I. DNA methylation analysis of tumor suppressor genes in monoclonal gammopathy of undetermined significance. Ann. Hematol. 2010, 89, 191–199.
[59]  Nojima, M.; Maruyama, R.; Yasui, H.; Suzuki, H.; Maruyama, Y.; Tarasawa, I.; Sasaki, Y.; Asaoku, H.; Sakai, H.; Hayashi, T.; et al. Genomic screening for genes silenced by DNA methylation revealed an association between RASD1 inactivation and dexamethasone resistance in multiple myeloma. Clin. Cancer Res. 2009, 15, 4356–4364.
[60]  Chen, G.; Wang, Y.; Huang, H.; Lin, F.; Wu, D.; Sun, A.; Chang, H.; Feng, Y. Combination of DNA methylation inhibitor 5-azacytidine and arsenic trioxide has synergistic activity in myeloma. Eur. J. Haematol. 2009, 82, 176–183.
[61]  Khong, T.; Sharkey, J.; Spencer, A. The effect of azacitidine on interleukin-6 signaling and nuclear factor-kappaB activation and its in vitro and in vivo activity against multiple myeloma. Haematologica 2008, 93, 860–869.
[62]  Hurt, E.M.; Thomas, S.B.; Peng, B.; Farrar, W.L. Reversal of p53 epigenetic silencing in multiple myeloma permits apoptosis by a p53 activator. Cancer Biol. Ther. 2006, 5, 1154–1160.
[63]  Reddy, J.; Shivapurkar, N.; Takahashi, T.; Parikh, G.; Stastny, V.; Echebiri, C.; Crumrine, K.; Zochbauer-Muller, S.; Drach, J.; Zheng, Y.; et al. Differential methylation of genes that regulate cytokine signaling in lymphoid and hematopoietic tumors. Oncogene 2005, 24, 732–736.
[64]  Wilop, S.; van Gemmeren, T.B.; Lentjes, M.H.; van Engeland, M.; Herman, J.G.; Brummendorf, T.H.; Jost, E.; Galm, O. Methylation-associated dysregulation of the suppressor of cytokine signaling-3 gene in multiple myeloma. Epigenetics 2012, 6, 1047–1052.
[65]  Chim, C.S.; Pang, R.; Fung, T.K.; Choi, C.L.; Liang, R. Epigenetic dysregulation of Wnt signaling pathway in multiple myeloma. Leukemia 2007, 21, 2527–2536.
[66]  Jost, E.; Gezer, D.; Wilop, S.; Suzuki, H.; Herman, J.G.; Osieka, R.; Galm, O. Epigenetic dysregulation of secreted Frizzled-related proteins in multiple myeloma. Cancer Lett. 2009, 281, 24–31.
[67]  Kocemba, K.A.; Groen, R.W.; van Andel, H.; Kersten, M.J.; Mahtouk, K.; Spaargaren, M.; Pals, S.T. Transcriptional silencing of the Wnt-antagonist DKK1 by promoter methylation is associated with enhanced Wnt signaling in advanced multiple myeloma. PLoS One 2012, 7, e30359.
[68]  Tshuikina, M.; Jernberg-Wiklund, H.; Nilsson, K.; Oberg, F. Epigenetic silencing of the interferon regulatory factor ICSBP/IRF8 in human multiple myeloma. Exp. Hematol. 2008, 36, 1673–1681.
[69]  Dawson, M.A.; Kouzarides, T. Cancer epigenetics: From mechanism to therapy. Cell 2012, 150, 12–27.
[70]  Marango, J.; Shimoyama, M.; Nishio, H.; Meyer, J.A.; Min, D.J.; Sirulnik, A.; Martinez-Martinez, Y.; Chesi, M.; Bergsagel, P.L.; Zhou, M.M.; et al. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood 2008, 111, 3145–3154.
[71]  Martinez-Garcia, E.; Popovic, R.; Min, D.J.; Sweet, S.M.; Thomas, P.M.; Zamdborg, L.; Heffner, A.; Will, C.; Lamy, L.; Staudt, L.M.; et al. The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood 2011, 117, 211–220, doi:10.1182/blood-2010-07-298349.
[72]  Brito, J.L.; Walker, B.; Jenner, M.; Dickens, N.J.; Brown, N.J.; Ross, F.M.; Avramidou, A.; Irving, J.A.; Gonzalez, D.; Davies, F.E.; et al. MMSET deregulation affects cell cycle progression and adhesion regulons in t(4;14) myeloma plasma cells. Haematologica 2009, 94, 78–86, doi:10.3324/haematol.13426.
[73]  Asangani, I.A.; Ateeq, B.; Cao, Q.; Dodson, L.; Pandhi, M.; Kunju, L.P.; Mehra, R.; Lonigro, R.J.; Siddiqui, J.; Palanisamy, N.; et al. Characterization of the EZH2-MMSET Histone Methyltransferase Regulatory Axis in Cancer. Mol. Cells 2013, 49, 80–93.
[74]  Yuan, W.; Xu, M.; Huang, C.; Liu, N.; Chen, S.; Zhu, B. H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J. Biol. Chem. 2011, 286, 7983–7989, doi:10.1074/jbc.M110.194027.
[75]  Kalushkova, A.; Fryknas, M.; Lemaire, M.; Fristedt, C.; Agarwal, P.; Eriksson, M.; Deleu, S.; Atadja, P.; Osterborg, A.; Nilsson, K.; et al. Polycomb target genes are silenced in multiple myeloma. PLoS One 2010, 5, e11483, doi:10.1371/journal.pone.0011483.
[76]  Jagani, Z.; Wiederschain, D.; Loo, A.; He, D.; Mosher, R.; Fordjour, P.; Monahan, J.; Morrissey, M.; Yao, Y.M.; Lengauer, C.; et al. The Polycomb group protein Bmi-1 is essential for the growth of multiple myeloma cells. Cancer Res. 2010, 70, 5528–5538, doi:10.1158/0008-5472.CAN-09-4229.
[77]  Isham, C.R.; Tibodeau, J.D.; Jin, W.; Xu, R.; Timm, M.M.; Bible, K.C. Chaetocin: A promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress. Blood 2007, 109, 2579–2588, doi:10.1182/blood-2006-07-027326.
[78]  Chapman, M.A.; Lawrence, M.S.; Keats, J.J.; Cibulskis, K.; Sougnez, C.; Schinzel, A.C.; Harview, C.L.; Brunet, J.P.; Ahmann, G.J.; Adli, M.; et al. Initial genome sequencing and analysis of multiple myeloma. Nature 2011, 471, 467–472, doi:10.1038/nature09837.
[79]  Van Haaften, G.; Dalgliesh, G.L.; Davies, H.; Chen, L.; Bignell, G.; Greenman, C.; Edkins, S.; Hardy, C.; O’Meara, S.; Teague, J.; et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat. Genet. 2009, 41, 521–523, doi:10.1038/ng.349.
[80]  Federico, M.; Bagella, L. Histone deacetylase inhibitors in the treatment of hematological malignancies and solid tumors. J. Biomed. Biotechnol. 2011, 2011, 475641.
[81]  Khan, O.; La Thangue, N.B. HDAC inhibitors in cancer biology: Emerging mechanisms and clinical applications. Immunol. Cell Biol. 2012, 90, 85–94, doi:10.1038/icb.2011.100.
[82]  Kim, H.J.; Bae, S.C. Histone deacetylase inhibitors: Molecular mechanisms of action and clinical trials as anti-cancer drugs. Am. J. Transl. Res. 2011, 3, 166–179.
[83]  Lemaire, M.; Fristedt, C.; Agarwal, P.; Menu, E.; van Valckenborgh, E.; de Bruyne, E.; Osterborg, A.; Atadja, P.; Larsson, O.; Axelson, M.; et al. The HDAC Inhibitor LBH589 Enhances the Antimyeloma Effects of the IGF-1RTK Inhibitor Picropodophyllin. Clin. Cancer Res. 2012, 18, 2230–2239, doi:10.1158/1078-0432.CCR-11-1764.
[84]  Maiso, P.; Carvajal-Vergara, X.; Ocio, E.M.; Lopez-Perez, R.; Mateo, G.; Gutierrez, N.; Atadja, P.; Pandiella, A.; San Miguel, J.F. The histone deacetylase inhibitor LBH589 is a potent antimyeloma agent that overcomes drug resistance. Cancer Res. 2006, 66, 5781–5789, doi:10.1158/0008-5472.CAN-05-4186.
[85]  Mitsiades, C.S.; Mitsiades, N.S.; McMullan, C.J.; Poulaki, V.; Shringarpure, R.; Hideshima, T.; Akiyama, M.; Chauhan, D.; Munshi, N.; Gu, X.; et al. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: Biological and clinical implications. Proc. Natl. Acad. Sci. USA 2004, 101, 540–545, doi:10.1073/pnas.2536759100.
[86]  Neri, P.; Tagliaferri, P.; di Martino, M.T.; Calimeri, T.; Amodio, N.; Bulotta, A.; Ventura, M.; Eramo, P.O.; Viscomi, C.; Arbitrio, M.; et al. In vivo anti-myeloma activity and modulation of gene expression profile induced by valproic acid, a histone deacetylase inhibitor. Br. J. Haematol. 2008, 143, 520–531.
[87]  Todoerti, K.; Barbui, V.; Pedrini, O.; Lionetti, M.; Fossati, G.; Mascagni, P.; Rambaldi, A.; Neri, A.; Introna, M.; Lombardi, L.; et al. Pleiotropic anti-myeloma activity of ITF2357: Inhibition of interleukin-6 receptor signaling and repression of miR-19a and miR-19b. Haematologica 2010, 95, 260–269, doi:10.3324/haematol.2009.012088.
[88]  Deleu, S.; Menu, E.; Valckenborgh, E.V.; Camp, B.V.; Fraczek, J.; Broek, I.V.; Rogiers, V.; Vanderkerken, K. Histone deacetylase inhibitors in multiple myeloma. Hematol. Rev. 2009, 1, 46–56.
[89]  Baumann, P.; Junghanns, C.; Mandl-Weber, S.; Strobl, S.; Oduncu, F.; Schmidmaier, R. The pan-histone deacetylase inhibitor CR2408 disrupts cell cycle progression, diminishes proliferation and causes apoptosis in multiple myeloma cells. Br. J. Haematol. 2012, 156, 633–642, doi:10.1111/j.1365-2141.2011.08983.x.
[90]  Feng, R.; Ma, H.; Hassig, C.A.; Payne, J.E.; Smith, N.D.; Mapara, M.Y.; Hager, J.H.; Lentzsch, S. KD5170, a novel mercaptoketone-based histone deacetylase inhibitor, exerts antimyeloma effects by DNA damage and mitochondrial signaling. Mol. Cancer Ther. 2008, 7, 1494–1505, doi:10.1158/1535-7163.MCT-08-0183.
[91]  Mandl-Weber, S.; Meinel, F.G.; Jankowsky, R.; Oduncu, F.; Schmidmaier, R.; Baumann, P. The novel inhibitor of histone deacetylase resminostat (RAS2410) inhibits proliferation and induces apoptosis in multiple myeloma (MM) cells. Br. J. Haematol. 2010, 149, 518–528, doi:10.1111/j.1365-2141.2010.08124.x.
[92]  Stuhmer, T.; Arts, J.; Chatterjee, M.; Borawski, J.; Wolff, A.; King, P.; Einsele, H.; Leo, E.; Bargou, R.C. Preclinical anti-myeloma activity of the novel HDAC-inhibitor JNJ-26481585. Br. J. Haematol. 2010, 149, 529–536, doi:10.1111/j.1365-2141.2010.08126.x.
[93]  Zhang, S.; Suvannasankha, A.; Crean, C.D.; White, V.L.; Chen, C.S.; Farag, S.S. The novel histone deacetylase inhibitor, AR-42, inhibits gp130/STAT3 pathway and induces apoptosis and cell cycle arrest in multiple myeloma cells. Int. J. Cancer 2010, 129, 204–213.
[94]  De Bruyne, E.; Bos, T.J.; Schuit, F.; van Valckenborgh, E.; Menu, E.; Thorrez, L.; Atadja, P.; Jernberg-Wiklund, H.; Vanderkerken, K. IGF-1 suppresses Bim expression in multiple myeloma via epigenetic and posttranslational mechanisms. Blood 2010, 115, 2430–2440, doi:10.1182/blood-2009-07-232801.
[95]  Chen, S.; Dai, Y.; Pei, X.Y.; Grant, S. Bim upregulation by histone deacetylase inhibitors mediates interactions with the Bcl-2 antagonist ABT-737: Evidence for distinct roles for Bcl-2, Bcl-xL, and Mcl-1. Mol. Cell. Biol. 2009, 29, 6149–6169, doi:10.1128/MCB.01481-08.
[96]  Fandy, T.E.; Shankar, S.; Ross, D.D.; Sausville, E.; Srivastava, R.K. Interactive effects of HDAC inhibitors and TRAIL on apoptosis are associated with changes in mitochondrial functions and expressions of cell cycle regulatory genes in multiple myeloma. Neoplasia 2005, 7, 646–657, doi:10.1593/neo.04655.
[97]  Kerr, E.; Holohan, C.; McLaughlin, K.M.; Majkut, J.; Dolan, S.; Redmond, K.; Riley, J.; McLaughlin, K.; Stasik, I.; Crudden, M.; et al. Identification of an acetylation-dependant Ku70/FLIP complex that regulates FLIP expression and HDAC inhibitor-induced apoptosis. Cell Death Differ. 2012, 19, 1317–1327, doi:10.1038/cdd.2012.8.
[98]  Catley, L.; Weisberg, E.; Tai, Y.T.; Atadja, P.; Remiszewski, S.; Hideshima, T.; Mitsiades, N.; Shringarpure, R.; LeBlanc, R.; Chauhan, D.; et al. NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood 2003, 102, 2615–2622, doi:10.1182/blood-2003-01-0233.
[99]  Cheriyath, V.; Kuhns, M.A.; Kalaycio, M.E.; Borden, E.C. Potentiation of apoptosis by histone deacetylase inhibitors and doxorubicin combination: Cytoplasmic cathepsin B as a mediator of apoptosis in multiple myeloma. Br. J. Cancer 2011, 104, 957–967, doi:10.1038/bjc.2011.42.
[100]  Lee, C.K.; Wang, S.; Huang, X.; Ryder, J.; Liu, B. HDAC inhibition synergistically enhances alkylator-induced DNA damage responses and apoptosis in multiple myeloma cells. Cancer Lett. 2010, 296, 233–240, doi:10.1016/j.canlet.2010.04.014.
[101]  Sanchez, E.; Shen, J.; Steinberg, J.; Li, M.; Wang, C.; Bonavida, B.; Chen, H.; Li, Z.W.; Berenson, J.R. The histone deacetylase inhibitor LBH589 enhances the anti-myeloma effects of chemotherapy in vitro and in vivo. Leuk. Res. 2010, 35, 373–379.
[102]  Lavelle, D.; Chen, Y.H.; Hankewych, M.; DeSimone, J. Histone deacetylase inhibitors increase p21(WAF1) and induce apoptosis of human myeloma cell lines independent of decreased IL-6 receptor expression. Am. J. Hematol. 2001, 68, 170–178, doi:10.1002/ajh.1174.
[103]  Deleu, S.; Lemaire, M.; Arts, J.; Menu, E.; van Valckenborgh, E.; King, P.; vande Broek, I.; de Raeve, H.; van Camp, B.; Croucher, P.; et al. The effects of JNJ-26481585, a novel hydroxamate-based histone deacetylase inhibitor, on the development of multiple myeloma in the 5T2MM and 5T33MM murine models. Leukemia 2009, 23, 1894–1903, doi:10.1038/leu.2009.121.
[104]  Pei, X.Y.; Dai, Y.; Grant, S. Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin. Cancer Res. 2004, 10, 3839–3852, doi:10.1158/1078-0432.CCR-03-0561.
[105]  Bai, L.Y.; Omar, H.A.; Chiu, C.F.; Chi, Z.P.; Hu, J.L.; Weng, J.R. Antitumor effects of (S)-HDAC42, a phenylbutyrate-derived histone deacetylase inhibitor, in multiple myeloma cells. Cancer Chemother. Pharmacol. 2010, 35, 373–379.
[106]  Catley, L.; Weisberg, E.; Kiziltepe, T.; Tai, Y.T.; Hideshima, T.; Neri, P.; Tassone, P.; Atadja, P.; Chauhan, D.; Munshi, N.C.; et al. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood 2006, 108, 3441–3449, doi:10.1182/blood-2006-04-016055.
[107]  Deleu, S.; Lemaire, M.; Arts, J.; Menu, E.; van Valckenborgh, E.; vande Broek, I.; de Raeve, H.; Coulton, L.; van Camp, B.; Croucher, P.; et al. Bortezomib alone or in combination with the histone deacetylase inhibitor JNJ-26481585: Effect on myeloma bone disease in the 5T2MM murine model of myeloma. Cancer Res. 2009, 69, 5307–5311, doi:10.1158/0008-5472.CAN-08-4472.
[108]  Santo, L.; Hideshima, T.; Kung, A.L.; Tseng, J.C.; Tamang, D.; Yang, M.; Jarpe, M.; van Duzer, J.H.; Mazitschek, R.; Ogier, W.C.; et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 2012, 119, 2579–2589, doi:10.1182/blood-2011-10-387365.
[109]  Hideshima, T.; Richardson, P.G.; Anderson, K.C. Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma. Mol. Cancer Ther. 2012, 10, 2034–2042.
[110]  Baud, V.; Karin, M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat. Rev. Drug Discov. 2009, 8, 33–40, doi:10.1038/nrd2781.
[111]  Qu, X.; Du, J.; Zhang, C.; Fu, W.; Xi, H.; Zou, J.; Hou, J. Arsenic trioxide exerts antimyeloma effects by inhibiting activity in the cytoplasmic substrates of histone deacetylase 6. PLoS One 2012, 7, e32215.
[112]  Robert, T.; Vanoli, F.; Chiolo, I.; Shubassi, G.; Bernstein, K.A.; Rothstein, R.; Botrugno, O.A.; Parazzoli, D.; Oldani, A.; Minucci, S.; et al. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 2011, 471, 74–79.
[113]  Feng, R.; Oton, A.; Mapara, M.Y.; Anderson, G.; Belani, C.; Lentzsch, S. The histone deacetylase inhibitor, PXD101, potentiates bortezomib-induced anti-multiple myeloma effect by induction of oxidative stress and DNA damage. Br. J. Haematol. 2007, 139, 385–397, doi:10.1111/j.1365-2141.2007.06772.x.
[114]  Chen, X.; Wong, P.; Radany, E.H.; Stark, J.M.; Laulier, C.; Wong, J.Y. Suberoylanilide hydroxamic acid as a radiosensitizer through modulation of RAD51 protein and inhibition of homology-directed repair in multiple myeloma. Mol. Cancer Res. 2012, 10, 1052–1064, doi:10.1158/1541-7786.MCR-11-0587.
[115]  Quintanilla-Martinez, L.; Kremer, M.; Specht, K.; Calzada-Wack, J.; Nathrath, M.; Schaich, R.; Hofler, H.; Fend, F. Analysis of signal transducer and activator of transcription 3 (Stat 3) pathway in multiple myeloma: Stat 3 activation and cyclin D1 dysregulation are mutually exclusive events. Am. J. Pathol. 2003, 162, 1449–1461, doi:10.1016/S0002-9440(10)64278-2.
[116]  Kitazoe, K.; Abe, M.; Hiasa, M.; Oda, A.; Amou, H.; Harada, T.; Nakano, A.; Takeuchi, K.; Hashimoto, T.; Ozaki, S.; et al. Valproic acid exerts anti-tumor as well as anti-angiogenic effects on myeloma. Int. J. Hematol. 2009, 89, 45–57, doi:10.1007/s12185-008-0226-9.
[117]  Kaiser, M.; Zavrski, I.; Sterz, J.; Jakob, C.; Fleissner, C.; Kloetzel, P.M.; Sezer, O.; Heider, U. The effects of the histone deacetylase inhibitor valproic acid on cell cycle, growth suppression and apoptosis in multiple myeloma. Haematologica 2006, 91, 248–251.
[118]  Wu, X.; Tao, Y.; Hou, J.; Meng, X.; Shi, J. Valproic Acid Upregulates NKG2D Ligand Expression through an ERK-dependent Mechanism and Potentially Enhances NK Cell-mediated Lysis of Myeloma. Neoplasia 2012, 14, 1178–1189.
[119]  Ewald, B.; Sampath, D.; Plunkett, W. Nucleoside analogs: Molecular mechanisms signaling cell death. Oncogene 2008, 27, 6522–6537, doi:10.1038/onc.2008.316.
[120]  Lavelle, D.; DeSimone, J.; Hankewych, M.; Kousnetzova, T.; Chen, Y.H. Decitabine induces cell cycle arrest at the G1 phase via p21(WAF1) and the G2/M phase via the p38 MAP kinase pathway. Leuk. Res. 2003, 27, 999–1007, doi:10.1016/S0145-2126(03)00068-7.
[121]  Khong, T.; Spencer, A. Targeting HSP 90 induces apoptosis and inhibits critical survival and proliferation pathways in multiple myeloma. Mol. Cancer Ther. 2012, 10, 1909–1917.
[122]  Podar, K.; Chauhan, D.; Anderson, K.C. Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 2009, 23, 10–24, doi:10.1038/leu.2008.259.
[123]  Moreaux, J.; Reme, T.; Leonard, W.; Veyrune, J.L.; Requirand, G.; Goldschmidt, H.; Hose, D.; Klein, B. Development of gene expression-based score to predict sensitivity of multiple myeloma cells to DNA methylation inhibitors. Mol. Cancer Ther. 2012, 11, 2685–2692, doi:10.1158/1535-7163.MCT-12-0721.
[124]  Klco, J.M.; Spencer, D.H.; Lamprecht, T.L.; Sarkaria, S.M.; Wylie, T.; Magrini, V.; Hundal, J.; Walker, J.; Varghese, N.; Erdmann-Gilmore, P.; et al. Genomic impact of transient low-dose decitabine treatment on primary AML cells. Blood 2013, 121, 1633–1643, doi:10.1182/blood-2012-09-459313.
[125]  Suarez, L.; Gore, S.D. Demethylation demystification. Blood 2013, 121, 1488–1489, doi:10.1182/blood-2013-02-483735.
[126]  Kiziltepe, T.; Hideshima, T.; Catley, L.; Raje, N.; Yasui, H.; Shiraishi, N.; Okawa, Y.; Ikeda, H.; Vallet, S.; Pozzi, S.; et al. 5-Azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells. Mol. Cancer Ther. 2007, 6, 1718–1727, doi:10.1158/1535-7163.MCT-07-0010.
[127]  Du, H.L.; Ren, L.M.; Chen, H.; Zhu, Y.; Qi, Y. Re-expression of p16 gene in the myeloma cell line U266 induced by synergy of sodium butyrate and 5-Aza-2'-deoxycytidine. Di Yi Jun Yi Da Xue Xue Bao 2002, 22, 981–984.
[128]  Lu, Q.; Lin, X.; Feng, J.; Zhao, X.; Gallagher, R.; Lee, M.Y.; Chiao, J.W.; Liu, D. Phenylhexyl isothiocyanate has dual function as histone deacetylase inhibitor and hypomethylating agent and can inhibit myeloma cell growth by targeting critical pathways. J. Hematol. Oncol. 2008, 1, 6, doi:10.1186/1756-8722-1-6.
[129]  Goodyear, O.; Agathanggelou, A.; Novitzky-Basso, I.; Siddique, S.; McSkeane, T.; Ryan, G.; Vyas, P.; Cavenagh, J.; Stankovic, T.; Moss, P.; et al. Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood 2010, 116, 1908–1918, doi:10.1182/blood-2009-11-249474.
[130]  Moreno-Bost, A.; Szmania, S.; Stone, K.; Garg, T.; Hoerring, A.; Szymonifka, J.; Shaughnessy, J., Jr.; Barlogie, B.; Prentice, H.G.; van Rhee, F. Epigenetic modulation of MAGE-A3 antigen expression in multiple myeloma following treatment with the demethylation agent 5-azacitidine and the histone deacetlyase inhibitor MGCD0103. Cytotherapy 2011, 13, 618–628, doi:10.3109/14653249.2010.529893.
[131]  Deangelo, D.J.; Spencer, A.; Bhalla, K.N.; Prince, H.M.; Fischer, T.; Kindler, T.; Giles, F.J.; Scott, J.W.; Parker, K.; Liu, A.; et al. Phase Ia/II, two-arm, open-label, dose-escalation study of oral panobinostat administered via two dosing schedules in patients with advanced hematologic malignancies. Leukemia 2013, doi:10.1038/leu.2013.38.
[132]  Niesvizky, R.; Ely, S.; Mark, T.; Aggarwal, S.; Gabrilove, J.L.; Wright, J.J.; Chen-Kiang, S.; Sparano, J.A. Phase 2 trial of the histone deacetylase inhibitor romidepsin for the treatment of refractory multiple myeloma. Cancer 2011, 117, 336–342, doi:10.1002/cncr.25584.
[133]  Galli, M.; Salmoiraghi, S.; Golay, J.; Gozzini, A.; Crippa, C.; Pescosta, N.; Rambaldi, A. A phase II multiple dose clinical trial of histone deacetylase inhibitor ITF2357 in patients with relapsed or progressive multiple myeloma. Ann. Hematol. 2010, 89, 185–190, doi:10.1007/s00277-009-0793-8.
[134]  Richardson, P.; Mitsiades, C.; Colson, K.; Reilly, E.; McBride, L.; Chiao, J.; Sun, L.; Ricker, J.; Rizvi, S.; Oerth, C.; et al. Phase I trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) in patients with advanced multiple myeloma. Leuk. Lymphoma 2008, 49, 502–507, doi:10.1080/10428190701817258.
[135]  Gimsing, P.; Hansen, M.; Knudsen, L.M.; Knoblauch, P.; Christensen, I.J.; Ooi, C.E.; Buhl-Jensen, P. A phase I clinical trial of the histone deacetylase inhibitor belinostat in patients with advanced hematological neoplasia. Eur. J. Haematol. 2008, 81, 170–176, doi:10.1111/j.1600-0609.2008.01102.x.
[136]  ClinicalTrials.gov. Available online: http://www.clinicaltrials.gov/ (accessed on 14 February 2013).
[137]  Moreau, P. The future of therapy for relapsed/refractory multiple myeloma: Emerging agents and novel treatment strategies. Semin. Hematol. 2012, 1, S33–S46, doi:10.1053/j.seminhematol.2012.05.004.
[138]  Prince, H.M. Pioneering studies of histone deacetylase inhibitors in myeloma: Signals of activity set the stage for combination therapy trials. Leuk. Lymphoma 2012, 53, 1658–1659, doi:10.3109/10428194.2012.658571.
[139]  Weber, D.M.; Graef, T.; Hussein, M.; Sobecks, R.M.; Schiller, G.J.; Lupinacci, L.; Hardwick, J.S.; Jagannath, S. Phase I trial of vorinostat combined with bortezomib for the treatment of relapsing and/or refractory multiple myeloma. Clin. Lymphoma Myeloma Leuk. 2012, 12, 319–324, doi:10.1016/j.clml.2012.07.007.
[140]  Mazumder, A.; Vesole, D.H.; Jagannath, S. Vorinostat plus bortezomib for the treatment of relapsed/refractory multiple myeloma: A case series illustrating utility in clinical practice. Clin. Lymphoma Myeloma Leuk. 2010, 10, 149–151, doi:10.3816/CLML.2010.n.022.
[141]  Badros, A.; Burger, A.M.; Philip, S.; Niesvizky, R.; Kolla, S.S.; Goloubeva, O.; Harris, C.; Zwiebel, J.; Wright, J.J.; Espinoza-Delgado, I.; et al. Phase I study of vorinostat in combination with bortezomib for relapsed and refractory multiple myeloma. Clin. Cancer Res. 2009, 15, 5250–5257, doi:10.1158/1078-0432.CCR-08-2850.
[142]  Kaufman, J.L.; Shah, J.J.; Laubach, J.P.; Mitchell, A.R.; Sharp, C.; Lewis, C.; Harvey, R.D.; Gleason, C.; Casbourne, D.; Nooka, A.K.; et al. Lenalidomide, Bortezomib, and Dexamethasone (RVD) in Combination with Vorinostat As Front-Line Therapy for Patients with Multiple Myeloma (MM): Results of a Phase 1 Study. ASH Annu. Meet. Abstr. 2012, 120, 336.
[143]  Shah, J.J.; Orlowski, R.Z.; Thomas, S.K.; Alexanian, R.; Wang, M.; Qazilbash, M.H.; Popat, U.R.; Parmar, S.; Shah, N.; Bashir, Q.; et al. Final Results of a Phase I/II Trial of the Combination of Concurrent Lenalidomide, Thalidomide and Dexamethasone in Patients with Relapsed and/or Refractory Myeloma. ASH Annu. Meet. Abstr. 2012, 120, 75.
[144]  Richardson, P.G.; Alsina, M.; Weber, D.; Coutre, S.E.; Lonial, S.; Gasparetto, C.; Mukhopadhyay, S.; Ondovik, M.; Khan, M.; Paley, C.; et al. PANORAMA 2: Panobinostat Combined with Bortezomib and Dexamethasone in Patients with Relapsed and Bortezomib-Refractory Multiple Myeloma. ASH Annu. Meet. Abstr. 2012, 120, 1852.
[145]  Berdeja, J.G.; Hart, L.; Lamar, R.; Murphy, P.; Morgan, S.; Flinn, I.W. Phase I/II Study of Panobinostat and Carfilzomib in Patients (pts) with Relapsed or Refractory Multiple Myeloma (MM), Interim Phase I Safety Analysis. ASH Annu. Meet. Abstr. 2012, 120, 4048.
[146]  Shah, J.J.; Thomas, S.K.; Weber, D.M.; Wang, M.; Alexanian, R.; Qazilbash, M.H.; Bashir, Q.; Parmar, S.; Shah, N.; Popat, U.R.; et al. Phase 1/1b Study of the Efficacy and Safety of the Combination of Panobinostat + Carfilzomib in Patients with Relapsed and/or Refractory Multiple Myeloma. ASH Annu. Meet. Abstr. 2012, 120, 4081.
[147]  Harrison, S.J.; Quach, H.; Link, E.; Seymour, J.F.; Ritchie, D.S.; Ruell, S.; Dean, J.; Januszewicz, H.; Johnstone, R.; Neeson, P.; et al. A high rate of durable responses with romidepsin, bortezomib, and dexamethasone in relapsed or refractory multiple myeloma. Blood 2011, 118, 6274–6283, doi:10.1182/blood-2011-03-339879.
[148]  Dimopoulos, M.A.; Jagannath, S.; Yoon, S.-S.; Siegel, D.S.; Lonial, S.; Hajek, R.; Facon, T.; Rosinol, L.; Blacklock, H.A.; Goldschmidt, H.; et al. Vantage 088: Vorinostat in Combination with Bortezomib in Patients with Relapsed/Refractory Multiple Myeloma: Results of a Global, Randomized Phase 3 Trial. ASH Annu. Meet. Abstr. 2011, 118, 811.
[149]  Siegel, D.S.; Dimopoulos, M.A.; Yoon, S.-S.; Laubach, J.P.; Kaufman, J.L.; Goldschmidt, H.; Reece, D.E.; Leleu, X.; Durrant, S.; Offner, F.C.; et al. Vantage 095: Vorinostat in Combination with Bortezomib in Salvage Multiple Myeloma Patients: Final Study Results of a Global Phase 2b Trial. ASH Annu. Meet. Abstr. 2011, 118, 480.
[150]  San-Miguel, J.F.; de Moraes Hungria, V.T.; Yoon, S.-S.; Wiktor-Jedrzejczak, W.; Elghandour, A.; Siritanaratkul, N.; Dimopoulos, M.A.; Corradini, P.; Nakorn, T.N.; Shelekhova, T.; et al. Update on a Phase III Study of Panobinostat with Bortezomib and Dexamethasone in Patients with Relapsed Multiple Myeloma: PANORAMA 1. ASH Annu. Meet. Abstr. 2011, 118, 3976.
[151]  Morgan, G. Future drug developments in multiple myeloma: An overview of novel lenalidomide-based combination therapies. Blood Rev. 2010, 24, S27–S32.
[152]  Hofmeister, C.C.; Bowers, M.A.; Efebera, Y.A.; Humphries, K.; Benson, D.M., Jr.; Greenfield, C.N.; Sell, M.; Devine, S.M. Phase I Trial of Lenalidomide + Vorinostat After Autologous Transplant in Multiple Myeloma. ASH Annu. Meet. Abstr. 2012, 120, 3114.
[153]  Toor, A.A.; Payne, K.K.; Chung, H.M.; Sabo, R.T.; Hazlett, A.F.; Kmieciak, M.; Sanford, K.; Williams, D.C.; Clark, W.B.; Roberts, C.H.; et al. Epigenetic induction of adaptive immune response in multiple myeloma: Sequential azacitidine and lenalidomide generate cancer testis antigen-specific cellular immunity. Br. J. Haematol. 2012, 158, 700–711, doi:10.1111/j.1365-2141.2012.09225.x.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413