The purpose of this study was to perform a number of preliminary in vitro evaluations on an array of modified gelatin gel sponge scaffolds for use in a bone graft application. The gelatin gels were modified through the addition of a number of components which each possess unique properties conducive to the creation and regeneration of bone: a preparation rich in growth factors (PRGF, a bioactive, lyophilized form of platelet-rich plasma), hydroxyapatite, and chitin whiskers. Platelet-rich plasma therapy is an emerging practice that has proven effective in a number of clinical applications, including enhancing bone repair through improved deposition of new bony matrix and angiogenesis. As such, the inclusion of PRGF in our gelatin scaffolds was intended to significantly enhance scaffold bioactivity, while the addition of hydroxyapatite and chitin whiskers were anticipated to increase scaffold strength. Additionally, the gelatin sponges, which readily dissolve in aqueous solutions, were subjected to 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) cross-linking, either during or post-gelation, to control their rate of degradation. Scaffolds were evaluated in vitro with respect to compressive strength, mass loss/degradation, protein release, and cellular interaction, with results demonstrating the potential of the gelatin gel sponge scaffold for use in the regeneration of bone.
References
[1]
Greenbaum, M.A.; Kanat, I.O. Current concepts in bone healing. Review of the literature. J. Am. Podiatr. Med. Assoc. 1993, 83, 123–129.
[2]
Logeart-Avramoglou, D.; Anagnostou, F.; Bizios, R.; Petite, H. Engineering bone: Challenges and obstacles. J. Cell. Mol. Med. 2005, 9, 72–84, doi:10.1111/j.1582-4934.2005.tb00338.x.
[3]
Abarrategi, A.; Moreno-Vicente, C.; Martinez-Vazquez, F.J.; Civantos, A.; Ramos, V.; Sanz-Casado, J.V.; Martinez-Corria, R.; Perera, F.H.; Mulero, F.; Miranda, P.; et al. Biological properties of solid free form designed ceramic scaffolds with BMP-2: in vitro and in vivo evaluation. PLoS One 2012, 7, e34117, doi:10.1371/journal.pone.0034117.
[4]
Elshahat, A. Correction of craniofacial skeleton contour defects using bioactive glas particles. J. Plast. Reconstr. Surg. 2006, 30, 113–119.
[5]
Ni, Z.L.; Liu, H.S.; Qu, Q.Y.; Lu, H.L.; Yan, B.; Zhang, Q.H. Using of titanium mesh for the reconstruction of skull base defect. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2006, 41, 351–354.
[6]
Moioli, E.K.; Clark, P.A.; Xin, X.; Lal, S.; Mao, J.J. Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Adv. Drug Deliv. Rev. 2007, 59, 308–324, doi:10.1016/j.addr.2007.03.019.
[7]
Ciardelli, G.; Gentile, P.; Chiono, V.; Mattioli-Belmonte, M.; Vozzi, G.; Barbani, N.; Giusti, P. Enzymatically crosslinked porous composite matrices for bone tissue regeneration. J. Biomed. Mater. Res. A 2010, 92, 137–151.
[8]
Kane, R.J.; Roeder, R.K. Effects of hydroxyapatite reinforcement on the architecture and mechanical properties of freeze-dried collagen scaffolds. J. Mech. Behav. Biomed. Mater. 2012, 7, 41–49, doi:10.1016/j.jmbbm.2011.09.010.
[9]
Prosecka, E.; Rampichova, M.; Vojtova, L.; Tvrdik, D.; Melcakova, S.; Juhasova, J.; Plencner, M.; Jakubova, R.; Jancar, J.; Necas, A.; et al. Optimized conditions for mesenchymal stem cells to differentiate into osteoblasts on a collagen/hydroxyapatite matrix. J. Biomed. Mater. Res. A 2011, 99, 307–315.
[10]
Wang, G.; Babadagli, M.E.; Uludag, H. Bisphosphonate-derivatized liposomes to control drug release from collagen/hydroxyapatite scaffolds. Mol. Pharm. 2011, 8, 1025–1034, doi:10.1021/mp200028w.
[11]
Gleeson, J.P.; Plunkett, N.A.; O'Brien, F.J. Addition of hydroxyapatite improves stiffness, Interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. Eur. Cells Mater. 2010, 20, 218–230.
[12]
Neffe, A.T.; Loebus, A.; Zaupa, A.; Stoetzel, C.; Muller, F.A.; Lendlein, A. Gelatin functionalization with tyrosine derived moieties to increase the interaction with hydroxyapatite fillers. Acta Biomater. 2011, 7, 1693–1701, doi:10.1016/j.actbio.2010.11.025.
[13]
Azami, M.; Samadikuchaksaraei, A.; Poursamar, S.A. Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering. Int. J. Artif. Organs 2010, 33, 86–95.
[14]
Kim, H.W.; Knowles, J.C.; Kim, H.E. Porous scaffolds of gelatin-hydroxyapatite nanocomposites obtained by biomimetic approach: Characterization and antibiotic drug release. J. Biomed. Mater. Res. B 2005, 74, 686–698.
[15]
Kim, H.W.; Kim, H.E.; Salih, V. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials 2005, 26, 5221–5230, doi:10.1016/j.biomaterials.2005.01.047.
[16]
Woo, K.M.; Seo, J.; Zhang, R.; Ma, P.X. Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials 2007, 28, 2622–2630, doi:10.1016/j.biomaterials.2007.02.004.
[17]
Rohanizadeh, R.; Swain, M.V.; Mason, R.S. Gelatin sponges (Gelfoam) as a scaffold for osteoblasts. J. Mater. Sci. Mater. Med. 2008, 19, 1173–1182, doi:10.1007/s10856-007-3154-y.
[18]
Barbani, N.; Guerra, G.D.; Cristallini, C.; Urciuoli, P.; Avvisati, R.; Sala, A.; Rosellini, E. Hydroxyapatite/gelatin/gellan sponges as nanocomposite scaffolds for bone reconstruction. J. Mater. Sci. Mater. Med. 2012, 23, 51–61, doi:10.1007/s10856-011-4505-2.
[19]
Kohara, H.; Tabata, Y. Enhancement of ectopic osteoid formation following the dual release of bone morphogenetic protein 2 and Wnt1 inducible signaling pathway protein 1 from gelatin sponges. Biomaterials 2011, 32, 5726–5732, doi:10.1016/j.biomaterials.2011.04.035.
Sriupayo, J.; Supaphol, P.; Blackwell, J.; Rujiravanit, R. Preparation and characterization of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite films with or without heat treatment. Polymer 2005, 46, 5637–5644, doi:10.1016/j.polymer.2005.04.069.
[22]
Ji, Y.-L.; Wolfe, P.S.; Rodriguez, I.A.; Bowlin, G.L. Preparation of chitin nanofibril/polycaprolactone nanocomposite from a nonaqueous medium suspension. Carbohydr. Polym. 2012, 87, 2313–2319, doi:10.1016/j.carbpol.2011.10.066.
[23]
Junkasem, J.; Rujiravanit, R.; Supaphol, P. Fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite nanofibres by electrospinning. Nanotechnology 2006, 17, 4519–4528, doi:10.1088/0957-4484/17/17/039.
[24]
Wongpanit, P.; Sanchavanakit, N.; Pavasant, P.; Bunaprasert, T.; Tabata, Y.; Rujiravanit, R. Preparation and characterization of chitin whisker-reinforced silk fibroin nanocomposite sponges. Eur. Polym. J. 2007, 43, 4123–4135, doi:10.1016/j.eurpolymj.2007.07.004.
[25]
Hariraksapitak, P.; Supaphol, P. Preparation and Properties of a-Chitin-Whisker-Reinforced Hyaluronan–Gelatin Nanocomposite Scaffolds. J. Appl. Polym. Sci. 2010, 117, 3406–3418.
[26]
Han, T.; Wang, H.; Zhang, Y.Q. Combining platelet-rich plasma and tissue-engineered skin in the treatment of large skin wound. J. Craniofac. Surg. 2012, 23, 439–447, doi:10.1097/SCS.0b013e318231964a.
[27]
Kushida, S.; Kakudo, N.; Suzuki, K.; Kusumoto, K. Effects of Platelet-Rich Plasma on Proliferation and Myofibroblastic Differentiation in Human Dermal Fibroblasts. Ann. Plast. Surg. 2012, Oct 3, 23038148.
[28]
Taylor, D.W.; Petrera, M.; Hendry, M.; Theodoropoulos, J.S. A systematic review of the use of platelet-rich plasma in sports medicine as a new treatment for tendon and ligament injuries. Clin. J. Sport Med. 2011, 21, 344–352, doi:10.1097/JSM.0b013e31821d0f65.
[29]
Xie, X.; Wang, Y.; Zhao, C.; Guo, S.; Liu, S.; Jia, W.; Tuan, R.S.; Zhang, C. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials 2012, 33, 7008–7018, doi:10.1016/j.biomaterials.2012.06.058.
[30]
Lopez-Lopez, J.; Chimenos-Kustner, E.; Manzanares-Cespedes, C.; Munoz-Sanchez, J.; Castaneda-Vega, P.; Jane-Salas, E.; Alvarez-Lopez, J.M.; Gimeno-Sanding, A. Histomorphological study of the bone regeneration capacity of platelet-rich plasma, bone marrow and tricalcium phosphate: Experimental study on pigs. Med. Oral Patol. Oral 2009, 14, e620–e627.
[31]
Gentile, P.; Di Pasquali, C.; Bocchini, I.; Floris, M.; Eleonora, T.; Fiaschetti, V.; Floris, R.; Cervelli, V. Breast Reconstruction With Autologous Fat Graft Mixed With Platelet-Rich Plasma. Surg. Innov. 2012, Sep 10, 22964262.
[32]
Jo, C.H.; Kim, J.E.; Yoon, K.S.; Shin, S. Platelet-rich plasma stimulates cell proliferation and enhances matrix gene expression and synthesis in tenocytes from human rotator cuff tendons with degenerative tears. Am. J. Sport. Med. 2012, 40, 1035–1045, doi:10.1177/0363546512437525.
[33]
Messora, M.R.; Nagata, M.J.; Fucini, S.E.; Pola, N.M.; Campos, N.; Oliveira, G.C.; Bosco, A.F.; Garcia, V.G.; Furlaneto, F.A. Effect of platelet-rich plasma on the healing of mandibular defects treated with bone allograft. A radiographic study in dogs. J. Oral Implantol. 2012, Sep 26, 23013307.
[34]
Li, N.Y.; Yuan, R.T.; Chen, T.; Chen, L.Q.; Jin, X.M. Effect of platelet-rich plasma and latissimus dorsi muscle flap on osteogenesis and vascularization of tissue-engineered bone in dogs. J. Oral Maxillofac. Surg. 2009, 67, 1850–1858, doi:10.1016/j.joms.2009.04.029.
[35]
Rai, B.; Oest, M.E.; Dupont, K.M.; Ho, K.H.; Teoh, S.H.; Guldberg, R.E. Combination of platelet-rich plasma with polycaprolactone-tricalcium phosphate scaffolds for segmental bone defect repair. J. Biomed. Mater. Res. A 2007, 81, 888–899.
[36]
Huang, S.; Jia, S.; Liu, G.; Fang, D.; Zhang, D. Osteogenic differentiation of muscle satellite cells induced by platelet-rich plasma encapsulated in three-dimensional alginate scaffold. Oral. Surg. Oral Med. O. 2012, Jan 25, 22285139.
[37]
Sell, S.A.; Wolfe, P.S.; Ericksen, J.J.; Simpson, D.G.; Bowlin, G.L. Incorporating platelet-rich plasma into electrospun scaffolds for tissue engineering applications. Tissue Eng. Part A 2011, 17, 2723–2737, doi:10.1089/ten.tea.2010.0663.
[38]
Wolfe, P.S.; Sell, S.A.; Ericksen, J.J.; Simpson, D.G.; Bowlin, G.L. The creation of electrospun nanofibers from platelet rich plasma. J. Tissue Sci. Eng. 2011, 2, 1000107.
[39]
Sell, S.A.; Wolfe, P.S.; Spence, A.J.; Rodriguez, I.A.; McCool, J.M.; Petrella, R.L.; Garg, K.; Ericksen, J.J.; Bowlin, G.L. A Preliminary Study on the Potential of Manuka Honey and Platelet-Rich Plasma in Wound Healing. Int. J. Biomater. 2012, 2012, 313781.
[40]
Anitua, E.; Orive, G.; Andia, I. Use of PRGF to Accelerate Bone and Soft Tissue Regeneration in Postextraction Sites. Available online: http://www.dentalxp.com/vendors/1/PRGF%20to%20Accelerate%20Bone%20and%20Soft%20Tissue%20Regeneration.pdf (accessed on 12 March 2013).
[41]
Lu, H.H.; Vo, J.M.; Chin, H.S.; Lin, J.; Cozin, M.; Tsay, R.; Eisig, S.; Landesberg, R. Controlled delivery of platelet-rich plasma-derived growth factors for bone formation. J. Biomed. Mater. Res. A 2008, 86, 1128–1136.
[42]
Arvidson, K.; Abdallah, B.M.; Applegate, L.A.; Baldini, N.; Cenni, E.; Gomez-Barrena, E.; Granchi, D.; Kassem, M.; Konttinen, Y.T.; Mustafa, K.; et al. Bone regeneration and stem cells. J. Cell. Mol. Med. 2011, 15, 718–746, doi:10.1111/j.1582-4934.2010.01224.x.
[43]
Anitua, E.; Orive, G.; Andia, I. The Therapeutic Potential of PRGF in Dentistry and Oral Implantology. In Implant and Regenerative Therapy in Dentistry: A Guide to Decision Making; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 113–121.
[44]
Sell, S.; Barnes, C.; Smith, M.; McClure, M.; Madurantakam, P.; Grant, J.; McManus, M.; Bowlin, G. Extracellular matrix regenerated: Tissue engineering via electrospun biomimetic nanofibers. Polym. Int. 2007, 56, 1349–1360, doi:10.1002/pi.2344.
[45]
Barnes, C.P.; Pemble, C.W.; Brand, D.D.; Simpson, D.G.; Bowlin, G.L. Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol. Tissue Eng. 2007, 13, 1593–1605, doi:10.1089/ten.2006.0292.
Olde Damink, L.H.; Dijkstra, P.J.; van Luyn, M.J.; van Wachem, P.B.; Nieuwenhuis, P.; Feijen, J. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials 1996, 17, 765–773, doi:10.1016/0142-9612(96)81413-X.
[48]
McClure, M.; Sell, S.; Barnes, C.; Bowen, W.; Bowlin, G. Cross-linking electrospun polydioxanone-soluble elastin blends: Material characterization. J. Eng. Fiber. Fabr. 2008, 3, 1–10.