全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Temporal Features of Spike Trains in the Moth Antennal Lobe Revealed by a Comparative Time-Frequency Analysis

DOI: 10.1371/journal.pone.0084037

Full-Text   Cite this paper   Add to My Lib

Abstract:

The discrimination of complex sensory stimuli in a noisy environment is an immense computational task. Sensory systems often encode stimulus features in a spatiotemporal fashion through the complex firing patterns of individual neurons. To identify these temporal features, we have developed an analysis that allows the comparison of statistically significant features of spike trains localized over multiple scales of time-frequency resolution. Our approach provides an original way to utilize the discrete wavelet transform to process instantaneous rate functions derived from spike trains, and select relevant wavelet coefficients through statistical analysis. Our method uncovered localized features within olfactory projection neuron (PN) responses in the moth antennal lobe coding for the presence of an odor mixture and the concentration of single component odorants, but not for compound identities. We found that odor mixtures evoked earlier responses in biphasic response type PNs compared to single components, which led to differences in the instantaneous firing rate functions with their signal power spread across multiple frequency bands (ranging from 0 to 45.71 Hz) during a time window immediately preceding behavioral response latencies observed in insects. Odor concentrations were coded in excited response type PNs both in low frequency band differences (2.86 to 5.71 Hz) during the stimulus and in the odor trace after stimulus offset in low (0 to 2.86 Hz) and high (22.86 to 45.71 Hz) frequency bands. These high frequency differences in both types of PNs could have particular relevance for recruiting cellular activity in higher brain centers such as mushroom body Kenyon cells. In contrast, neurons in the specialized pheromone-responsive area of the moth antennal lobe exhibited few stimulus-dependent differences in temporal response features. These results provide interesting insights on early insect olfactory processing and introduce a novel comparative approach for spike train analysis applicable to a variety of neuronal data sets.

References

[1]  Murlis J, Jones CD (1981) Fine-scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol Entomol 6: 71–86 doi:10.1111/j.1365-3032.1981.tb00262.x.
[2]  Cardé RT, Willis MA (2008) Navigational strategies used by insects to find distant, wind-borne sources of odor. J Chem Ecol 34: 854–866 doi:10.1007/s10886-008-9484-5.
[3]  Lei H, Vickers N (2008) Central processing of natural odor mixtures in insects. J Chem Ecol 34: 915–927 doi:10.1007/s10886-008-9487-2.
[4]  Mazor O, Laurent G (2005) Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48: 661–673 doi:10.1016/j.neuron.2005.09.032.
[5]  Gerstner W, Kreiter A, Markram H, Herz A (1997) Neural codes: Firing rates and beyond. Proc Natl Acad Sci USA 94: 12740–12741.
[6]  Laurent G (2002) Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci 3: 884–895 doi:10.1038/nrn964.
[7]  Nawrot MP (2012) Dynamics of sensory processing in the dual olfactory pathway of the honeybee. Apidologie 43: 269–291 doi:10.1007/s13592-012-0131-3.
[8]  Krofczik S, Menzel R, Nawrot MP (2008) Rapid odor processing in the honeybee antennal lobe network. Front Comput Neurosci 2: 9 doi:10.3389/neuro.10.009.2008.
[9]  Kuebler LS, Olsson SB, Weniger R, Hansson BS (2011) Neuronal processing of complex mixtures establishes a unique odor representation in the moth antennal lobe. Front Neural Circuits 5: 7 doi:10.3389/fncir.2011.00007.
[10]  Belmabrouk H, Nowotny T, Rospars J-P, Martinez D (2011) Interaction of cellular and network mechanisms for efficient pheromone coding in moths. Proc Acad Sci USA 108: 19790–19795 doi:10.1073/pnas.1112367108.
[11]  Junek S, Kludt E, Wolf F, Schild D (2010) Olfactory Coding with Patterns of Response Latencies. Neuron 67: 872–884 doi:10.1016/j.neuron.2010.08.005.
[12]  Rath L, Giovanni Galizia C, Szyszka P (2011) Multiple memory traces after associative learning in the honey bee antennal lobe. Eur J Neurosci 34: 352–360 doi:10.1111/j.1460-9568.2011.07753.x.
[13]  Szyszka P, Demmler C, Oemisch M, Sommer L, Biergans S, et al. (2011) Mind the gap: olfactory trace conditioning in honeybees. J Neurosci 31: 7229–7239 doi:10.1523/JNEUROSCI.6668-10.2011.
[14]  Galili DS, Ludke A, Galizia CG, Szyszka P, Tanimoto H (2011) Olfactory trace conditioning in Drosophila. J Neurosci 31: 7240–7248 doi:10.1523/JNEUROSCI.6667-10.2011.
[15]  Martin JP, Beyerlein A, Dacks AM, Reisenman CE, Riffell JA, et al. (2011) The neurobiology of insect olfaction: sensory processing in a comparative context. Prog Neurobiol 95: 427–447 doi:10.1016/j.pneurobio.2011.09.007.
[16]  Daubechies I (1992) Ten lectures on wavelets (CMBS-NSF regional conference series in applied mathematics). Philadelphia: SIAM: Society for Industrial and Applied Mathematics. 1 pp.
[17]  Mallat SG (2009) A wavelet tour of signal processing. 3rd ed. Cambridge: Academic Press: Elsevier. 1 pp.
[18]  Debdas S, Qureshi M (2011) Application of wavelet transform for power quality studies of signal notches in weak AC system. Int J Scient Eng Res 2: 1–5.
[19]  Quian Quiroga R (2000) Obtaining single stimulus evoked potentials with wavelet denoising. Physica D 145: 278–292.
[20]  Capurro A, Diambra L, Lorenzo D, Macadar O, Martin M, et al. (1999) Human brain dynamics: the analysis of EEG signals with Tsallis information measure. Physica A 265: 235–254.
[21]  Capurro A, Diambra L, Lorenzo D, Macadar O, Martin M, et al. (1998) Tsallis entropy and cortical dynamics: the analysis of EEG signals Vol. 257. pp. 149–155.
[22]  Meisel C, Kuehn C (2012) Scaling effects and spatio-temporal multilevel dynamics in epileptic seizures. PLoS ONE 7: e30371 doi:10.1371/journal.pone.0030371.
[23]  Cao S (2003) Spike train characterization and decoding for neural prosthetic devices Pasadena, CA: Cal Tech.
[24]  Laubach M (2004) Wavelet-based processing of neuronal spike trains prior to discriminant analysis. J Neurosci Methods 134: 159–168 doi:10.1016/j.jneumeth.2003.11.007.
[25]  Lei H, RIffel JA, Gage SL, Hildebrand JG (2009) Contrast enhancement of stimulus intermittency in a primary olfactory network and its behavioral significance. J Biol 8: 16 doi:10.1186/jbiol120.
[26]  Kárpáti Z, Olsson S, Hansson BS, Dekker T (2010) Inheritance of central neuroanatomy and physiology related to pheromone preference in the male European corn borer. BMC Evol Biol 10: 286 doi:10.1186/1471-2148-10-286.
[27]  Christensen T, Hildebrand J (2002) Pheromonal and host-odor processing in the insect antennal lobe: how different? Curr Opin Neurobiol 12: 393–399.
[28]  Chong KY, Capurro A, Karout S, Pearce TC (2011) Stimulus and network dynamics collide in a ratiometric model of the antennal lobe macroglomerular complex. PLoS ONE 7: e29602–117 doi:10.1371/journal.pone.0029602.
[29]  Galizia CG, Roessler W (2010) Parallel olfactory systems in insects: Anatomy and function. Annu Rev Entomol 55: 399–420 doi:10.1146/annurev-ento-112408-085442.
[30]  Hansson BS, Stensmyr MC (2011) Evolution of Insect Olfaction. Neuron 72: 698–711 doi:10.1016/j.neuron.2011.11.003.
[31]  Olsson SB, Kuebler LS, Veit D, Steck K, Schmidt A, et al. (2011) A novel multicomponent stimulus device for use in olfactory experiments. J Neurosci Methods 195: 1–9 doi:10.1016/j.jneumeth.2010.09.020.
[32]  Collins J, Chow C, Imhoff T (1995) Aperiodic stochastic resonance in excitable systems. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 52: R3321–R3324.
[33]  Capurro A, Pakdaman K, Nomura T, Sato S (1998) Aperiodic stochastic resonance with correlated noise. Phys Rev E 58: 4820–4827.
[34]  Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological 57: 289–300.
[35]  Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 29: 1165–1188.
[36]  Genovese CR, Lazar NA, Nichols T (2002) Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate☆. NeuroImage 15: 870–878 doi:10.1006/nimg.2001.1037.
[37]  Namiki S, Kanzaki R (2011) Offset response of the olfactory projection neurons in the moth antennal lobe. BioSystems 103: 348–354 doi:10.1016/j.biosystems.2010.11.007.
[38]  Raman B, Joseph J, Tang J, Stopfer M (2010) Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors. J Neurosci 30: 1994–2006 doi:10.1523/JNEUROSCI.5639-09.2010.
[39]  Jarriault D, Gadenne C, Lucas P, Rospars JP, Anton S (2010) Transformation of the sex pheromone signal in the noctuid moth Agrotis ipsilon: from peripheral input to antennal lobe output. Chem Senses 35: 705–715 doi:10.1093/chemse/bjq069.
[40]  Wright GA, Carlton M, Smith BH (2009) A honeybee's ability to learn, recognize, and discriminate odors depends upon odor sampling time and concentration. Behav Neurosci 123: 36–43 doi:10.1037/a0014040.
[41]  Perez-Orive J, Bazhenov M, Laurent G (2004) Intrinsic and circuit properties favor coincidence detection for decoding oscillatory input. J Neurosci 24: 6037–6047 doi:10.1523/JNEUROSCI.1084-04.2004.
[42]  Ito I, Bazhenov M, Ong RC-Y, Raman B, Stopfer M (2009) Frequency transitions in odor-evoked neural oscillations. Neuron 64: 692–706 doi:10.1016/j.neuron.2009.10.004.
[43]  Capurro A, Baroni F, Olsson S, Kuebler L, Karout S, et al. (2012) Non-linear blend coding in the moth antennal lobe emerges from random glomerular networks. Front Neuroeng 5: 6 doi:10.3389/fneng.2012.00006.
[44]  Hallem EA, Carlson JR (2006) Coding of Odors by a Receptor Repertoire. Cell 125: 143–160 doi:10.1016/j.cell.2006.01.050.
[45]  Hallem E, Ho M, Carlson J (2004) The molecular basis of odor coding in the Drosophila antenna. Cell 117: 965–979 doi:10.1016/j.cell.2004.05.012.
[46]  Kaissling K, Hildebrand J, Tumlinson J (1989) Pheromone receptor cells in the male moth Manduca sexta. Arch Insect Biochem Physiol 10: 273–279.
[47]  Olsson SB, Kesevan S, Groot AT, Dekker T, Heckel DG, et al. (2010) Ostrinia revisited: Evidence for sex linkage in European Corn Borer Ostrinia nubilalis (Hubner) pheromone reception. BMC Evol Biol 10: 285 doi:10.1186/1471-2148-10-285.
[48]  Kurtovic A, Widmer A, Dickson BJ (2007) A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446: 542–546 doi:10.1038/nature05672.
[49]  Sakurai T, Mitsuno H, Haupt SS, Uchino K, Yokohari F, et al. (2011) A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori. PLoS Genet 7: e1002115 doi:10.1371/journal.pgen.1002115.t001.
[50]  Wang Z, Maier A, Leopold DA, Logothetis NK, Liang H (2007) Single-trial evoked potential estimation using wavelets. Comput Biol Med 37: 463–473 doi:10.1016/j.compbiomed.2006.08.011.
[51]  Ahmadi M, Quian Quiroga R (2012) Automatic denoising of single-trial evoked potentials. NeuroImage 66C: 672–680 doi:10.1016/j.neuroimage.2012.10.062.
[52]  Wiskott L, Berkes P (2003) Is slowness a learning principle of the visual cortex? Zoology (Jena) 106: 373–382 doi:10.1078/0944-2006-00132.
[53]  Wiskott L, Sejnowski TJ (2002) Slow feature analysis: unsupervised learning of invariances. Neural Comput 14: 715–770 doi:10.1162/089976602317318938.
[54]  Klampfl S, Maass W (2010) A theoretical basis for emergent pattern discrimination in neural systems through slow feature extraction. Neural Comput 22: 2979–3035 doi:__10.1162/NECO_a_00050.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413