[1] | Murlis J, Jones CD (1981) Fine-scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol Entomol 6: 71–86 doi:10.1111/j.1365-3032.1981.tb00262.x.
|
[2] | Cardé RT, Willis MA (2008) Navigational strategies used by insects to find distant, wind-borne sources of odor. J Chem Ecol 34: 854–866 doi:10.1007/s10886-008-9484-5.
|
[3] | Lei H, Vickers N (2008) Central processing of natural odor mixtures in insects. J Chem Ecol 34: 915–927 doi:10.1007/s10886-008-9487-2.
|
[4] | Mazor O, Laurent G (2005) Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48: 661–673 doi:10.1016/j.neuron.2005.09.032.
|
[5] | Gerstner W, Kreiter A, Markram H, Herz A (1997) Neural codes: Firing rates and beyond. Proc Natl Acad Sci USA 94: 12740–12741.
|
[6] | Laurent G (2002) Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci 3: 884–895 doi:10.1038/nrn964.
|
[7] | Nawrot MP (2012) Dynamics of sensory processing in the dual olfactory pathway of the honeybee. Apidologie 43: 269–291 doi:10.1007/s13592-012-0131-3.
|
[8] | Krofczik S, Menzel R, Nawrot MP (2008) Rapid odor processing in the honeybee antennal lobe network. Front Comput Neurosci 2: 9 doi:10.3389/neuro.10.009.2008.
|
[9] | Kuebler LS, Olsson SB, Weniger R, Hansson BS (2011) Neuronal processing of complex mixtures establishes a unique odor representation in the moth antennal lobe. Front Neural Circuits 5: 7 doi:10.3389/fncir.2011.00007.
|
[10] | Belmabrouk H, Nowotny T, Rospars J-P, Martinez D (2011) Interaction of cellular and network mechanisms for efficient pheromone coding in moths. Proc Acad Sci USA 108: 19790–19795 doi:10.1073/pnas.1112367108.
|
[11] | Junek S, Kludt E, Wolf F, Schild D (2010) Olfactory Coding with Patterns of Response Latencies. Neuron 67: 872–884 doi:10.1016/j.neuron.2010.08.005.
|
[12] | Rath L, Giovanni Galizia C, Szyszka P (2011) Multiple memory traces after associative learning in the honey bee antennal lobe. Eur J Neurosci 34: 352–360 doi:10.1111/j.1460-9568.2011.07753.x.
|
[13] | Szyszka P, Demmler C, Oemisch M, Sommer L, Biergans S, et al. (2011) Mind the gap: olfactory trace conditioning in honeybees. J Neurosci 31: 7229–7239 doi:10.1523/JNEUROSCI.6668-10.2011.
|
[14] | Galili DS, Ludke A, Galizia CG, Szyszka P, Tanimoto H (2011) Olfactory trace conditioning in Drosophila. J Neurosci 31: 7240–7248 doi:10.1523/JNEUROSCI.6667-10.2011.
|
[15] | Martin JP, Beyerlein A, Dacks AM, Reisenman CE, Riffell JA, et al. (2011) The neurobiology of insect olfaction: sensory processing in a comparative context. Prog Neurobiol 95: 427–447 doi:10.1016/j.pneurobio.2011.09.007.
|
[16] | Daubechies I (1992) Ten lectures on wavelets (CMBS-NSF regional conference series in applied mathematics). Philadelphia: SIAM: Society for Industrial and Applied Mathematics. 1 pp.
|
[17] | Mallat SG (2009) A wavelet tour of signal processing. 3rd ed. Cambridge: Academic Press: Elsevier. 1 pp.
|
[18] | Debdas S, Qureshi M (2011) Application of wavelet transform for power quality studies of signal notches in weak AC system. Int J Scient Eng Res 2: 1–5.
|
[19] | Quian Quiroga R (2000) Obtaining single stimulus evoked potentials with wavelet denoising. Physica D 145: 278–292.
|
[20] | Capurro A, Diambra L, Lorenzo D, Macadar O, Martin M, et al. (1999) Human brain dynamics: the analysis of EEG signals with Tsallis information measure. Physica A 265: 235–254.
|
[21] | Capurro A, Diambra L, Lorenzo D, Macadar O, Martin M, et al. (1998) Tsallis entropy and cortical dynamics: the analysis of EEG signals Vol. 257. pp. 149–155.
|
[22] | Meisel C, Kuehn C (2012) Scaling effects and spatio-temporal multilevel dynamics in epileptic seizures. PLoS ONE 7: e30371 doi:10.1371/journal.pone.0030371.
|
[23] | Cao S (2003) Spike train characterization and decoding for neural prosthetic devices Pasadena, CA: Cal Tech.
|
[24] | Laubach M (2004) Wavelet-based processing of neuronal spike trains prior to discriminant analysis. J Neurosci Methods 134: 159–168 doi:10.1016/j.jneumeth.2003.11.007.
|
[25] | Lei H, RIffel JA, Gage SL, Hildebrand JG (2009) Contrast enhancement of stimulus intermittency in a primary olfactory network and its behavioral significance. J Biol 8: 16 doi:10.1186/jbiol120.
|
[26] | Kárpáti Z, Olsson S, Hansson BS, Dekker T (2010) Inheritance of central neuroanatomy and physiology related to pheromone preference in the male European corn borer. BMC Evol Biol 10: 286 doi:10.1186/1471-2148-10-286.
|
[27] | Christensen T, Hildebrand J (2002) Pheromonal and host-odor processing in the insect antennal lobe: how different? Curr Opin Neurobiol 12: 393–399.
|
[28] | Chong KY, Capurro A, Karout S, Pearce TC (2011) Stimulus and network dynamics collide in a ratiometric model of the antennal lobe macroglomerular complex. PLoS ONE 7: e29602–117 doi:10.1371/journal.pone.0029602.
|
[29] | Galizia CG, Roessler W (2010) Parallel olfactory systems in insects: Anatomy and function. Annu Rev Entomol 55: 399–420 doi:10.1146/annurev-ento-112408-085442.
|
[30] | Hansson BS, Stensmyr MC (2011) Evolution of Insect Olfaction. Neuron 72: 698–711 doi:10.1016/j.neuron.2011.11.003.
|
[31] | Olsson SB, Kuebler LS, Veit D, Steck K, Schmidt A, et al. (2011) A novel multicomponent stimulus device for use in olfactory experiments. J Neurosci Methods 195: 1–9 doi:10.1016/j.jneumeth.2010.09.020.
|
[32] | Collins J, Chow C, Imhoff T (1995) Aperiodic stochastic resonance in excitable systems. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 52: R3321–R3324.
|
[33] | Capurro A, Pakdaman K, Nomura T, Sato S (1998) Aperiodic stochastic resonance with correlated noise. Phys Rev E 58: 4820–4827.
|
[34] | Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological 57: 289–300.
|
[35] | Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 29: 1165–1188.
|
[36] | Genovese CR, Lazar NA, Nichols T (2002) Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate☆. NeuroImage 15: 870–878 doi:10.1006/nimg.2001.1037.
|
[37] | Namiki S, Kanzaki R (2011) Offset response of the olfactory projection neurons in the moth antennal lobe. BioSystems 103: 348–354 doi:10.1016/j.biosystems.2010.11.007.
|
[38] | Raman B, Joseph J, Tang J, Stopfer M (2010) Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors. J Neurosci 30: 1994–2006 doi:10.1523/JNEUROSCI.5639-09.2010.
|
[39] | Jarriault D, Gadenne C, Lucas P, Rospars JP, Anton S (2010) Transformation of the sex pheromone signal in the noctuid moth Agrotis ipsilon: from peripheral input to antennal lobe output. Chem Senses 35: 705–715 doi:10.1093/chemse/bjq069.
|
[40] | Wright GA, Carlton M, Smith BH (2009) A honeybee's ability to learn, recognize, and discriminate odors depends upon odor sampling time and concentration. Behav Neurosci 123: 36–43 doi:10.1037/a0014040.
|
[41] | Perez-Orive J, Bazhenov M, Laurent G (2004) Intrinsic and circuit properties favor coincidence detection for decoding oscillatory input. J Neurosci 24: 6037–6047 doi:10.1523/JNEUROSCI.1084-04.2004.
|
[42] | Ito I, Bazhenov M, Ong RC-Y, Raman B, Stopfer M (2009) Frequency transitions in odor-evoked neural oscillations. Neuron 64: 692–706 doi:10.1016/j.neuron.2009.10.004.
|
[43] | Capurro A, Baroni F, Olsson S, Kuebler L, Karout S, et al. (2012) Non-linear blend coding in the moth antennal lobe emerges from random glomerular networks. Front Neuroeng 5: 6 doi:10.3389/fneng.2012.00006.
|
[44] | Hallem EA, Carlson JR (2006) Coding of Odors by a Receptor Repertoire. Cell 125: 143–160 doi:10.1016/j.cell.2006.01.050.
|
[45] | Hallem E, Ho M, Carlson J (2004) The molecular basis of odor coding in the Drosophila antenna. Cell 117: 965–979 doi:10.1016/j.cell.2004.05.012.
|
[46] | Kaissling K, Hildebrand J, Tumlinson J (1989) Pheromone receptor cells in the male moth Manduca sexta. Arch Insect Biochem Physiol 10: 273–279.
|
[47] | Olsson SB, Kesevan S, Groot AT, Dekker T, Heckel DG, et al. (2010) Ostrinia revisited: Evidence for sex linkage in European Corn Borer Ostrinia nubilalis (Hubner) pheromone reception. BMC Evol Biol 10: 285 doi:10.1186/1471-2148-10-285.
|
[48] | Kurtovic A, Widmer A, Dickson BJ (2007) A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446: 542–546 doi:10.1038/nature05672.
|
[49] | Sakurai T, Mitsuno H, Haupt SS, Uchino K, Yokohari F, et al. (2011) A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori. PLoS Genet 7: e1002115 doi:10.1371/journal.pgen.1002115.t001.
|
[50] | Wang Z, Maier A, Leopold DA, Logothetis NK, Liang H (2007) Single-trial evoked potential estimation using wavelets. Comput Biol Med 37: 463–473 doi:10.1016/j.compbiomed.2006.08.011.
|
[51] | Ahmadi M, Quian Quiroga R (2012) Automatic denoising of single-trial evoked potentials. NeuroImage 66C: 672–680 doi:10.1016/j.neuroimage.2012.10.062.
|
[52] | Wiskott L, Berkes P (2003) Is slowness a learning principle of the visual cortex? Zoology (Jena) 106: 373–382 doi:10.1078/0944-2006-00132.
|
[53] | Wiskott L, Sejnowski TJ (2002) Slow feature analysis: unsupervised learning of invariances. Neural Comput 14: 715–770 doi:10.1162/089976602317318938.
|
[54] | Klampfl S, Maass W (2010) A theoretical basis for emergent pattern discrimination in neural systems through slow feature extraction. Neural Comput 22: 2979–3035 doi:__10.1162/NECO_a_00050.
|