全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Effect of Intra-Arterial Angiotensin II on the Hepatic Tumor to Non-Tumor Blood Flow Ratio for Radioembolization: A Systematic Review

DOI: 10.1371/journal.pone.0086394

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purpose Treatment efficacy of intra-arterial radioembolization for liver tumors depends on the selective targeting of tumorous tissue. Recent investigations have demonstrated that tumors may receive inadequate doses of radioactivity after radioembolization, due to unfavorable tumor to non-tumor (T/N) uptake ratios of radioactive microspheres. Hepatic arterial infusion of the vasoconstrictor angiotensin II (AT-II) is reported to increase the T/N blood flow ratio. The purpose of this systematic review was to provide a comprehensive overview of the effect of hepatic arterial AT-II on T/N blood flow ratio in patients with hepatic malignancies, and determine its clinical value for radioembolization. Methods This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A structured search was performed in the PubMed, EMBASE and Cochrane databases. Only studies that presented data on T/N ratios before and after infusion of AT-II into the hepatic artery, in human patients with hepatic malignancies, were selected. Median T/N ratios before, during and after AT-II infusion, and the median T/N ratio improvement factor were extracted from the selected articles. All data on systemic blood pressure measurements and clinical symptoms were also extracted. Results The search identified 524 titles of which 5 studies, including a total of 71 patients were considered relevant. Median T/N ratios before infusion of AT-II ranged from 0.4 to 3.4. All studies observed a substantial improvement of the T/N ratio after AT-II infusion, with median improvement factors ranging from 1.8 to 3.1. A transitory increase of systemic blood pressure was observed during AT-II infusion. Conclusions Infusion of AT-II into the hepatic artery leads to an increase of the tumor to non-tumor blood flow ratio, as measured by T/N uptake ratios. Clinical trials are warranted to assess safety aspects, optimal administration strategy and impact on treatment efficacy during radioembolization.

References

[1]  Cosimelli M, Golfieri R, Cagol PP, Carpanese L, Sciuto R, et al. (2010) Multi-centre phase II clinical trial of yttrium-90 resin microspheres alone in unresectable, chemotherapy refractory colorectal liver metastases. Br J Cancer 103: 324–331.
[2]  Gray B, Van Hazel G, Hope M, Burton M, Moroz P, et al. (2001) Randomised trial of SIR-Spheres plus chemotherapy vs. chemotherapy alone for treating patients with liver metastases from primary large bowel cancer. Ann Oncol 12: 1711–1720.
[3]  Hendlisz A, Van den Eynde M, Peeters M, Maleux G, Lambert B, et al. (2010) Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol 28: 3687–3694.
[4]  Van Hazel G, Blackwell A, Anderson J, Price D, Moroz P, et al. (2004) Randomised phase 2 trial of SIR-Spheres plus fluorouracil/leucovorin chemotherapy versus fluorouracil/leucovorin chemotherapy alone in advanced colorectal cancer. J Surg Oncol 88: 78–85.
[5]  Vente MA, Wondergem M, van der Tweel I, van den Bosch MA, Zonnenberg BA, et al. (2009) Yttrium-90 microsphere radioembolization for the treatment of liver malignancies: a structured meta-analysis. Eur Radiol 19: 951–959.
[6]  Bierman HR, Byron RL, Kelley KH, Grady A (1951) Studies on the blood supply of tumors in man. III. Vascular patterns of the liver by hepatic arteriography in vivo. J Natl Cancer Inst 12: 107–131.
[7]  Flamen P, Vanderlinden B, Delatte P, Ghanem G, Ameye L, et al. (2008) Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with Yttrium-90 labeled resin microspheres. Phys Med Biol 53: 6591–6603.
[8]  Garin E, Lenoir L, Rolland Y, Edeline J, Mesbah H, et al. (2012) Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. J Nucl Med 53: 255–263.
[9]  Gulec SA, Mesoloras G, Dezarn WA, McNeillie P, Kennedy AS (2007) Safety and efficacy of Y-90 microsphere treatment in patients with primary and metastatic liver cancer: the tumor selectivity of the treatment as a function of tumor to liver flow ratio. J Transl Med 5: 15.
[10]  Ulrich G, Dudeck O, Furth C, Ruf J, Grosser OS, et al. (2013) Predictive value of intratumoral 99mTc-macroaggregated albumin uptake in patients with colorectal liver metastases scheduled for radioembolization with 90Y-microspheres. J Nucl Med 54: 516–522.
[11]  Ho S, Lau WY, Leung TW, Chan M, Chan KW, et al. (1997) Tumour-to-normal uptake ratio of 90Y microspheres in hepatic cancer assessed with 99Tcm macroaggregated albumin. Br J Radiol 70: 823–828.
[12]  Dhabuwala A, Lamerton P, Stubbs RS (2005) Relationship of 99mtechnetium labelled macroaggregated albumin (99mTc-MAA) uptake by colorectal liver metastases to response following Selective Internal Radiation Therapy (SIRT). BMC Nucl Med 5: 7.
[13]  Wondergem M, Smits ML, Elschot M, de Jong HW, Verkooijen HM, et al.. (2013) 99mTc-Macroaggregated Albumin Poorly Predicts the Intrahepatic Distribution of 90Y Resin Microspheres in Hepatic Radioembolization. J Nucl Med.
[14]  Kennedy AS, Nutting C, Coldwell D, Gaiser J, Drachenberg C (2004) Pathologic response and microdosimetry of (90)Y microspheres in man: review of four explanted whole livers. Int J Radiat Oncol Biol Phys 60: 1552–1563.
[15]  Gyves JW, Ziessman HA, Ensminger WD, Thrall JH, Niederhuber JE, et al. (1984) Definition of hepatic tumor microcirculation by single photon emission computerized tomography (SPECT). J Nucl Med 25: 972–977.
[16]  Dancey JE, Shepherd FA, Paul K, Sniderman KW, Houle S, et al. (2000) Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. J Nucl Med 41: 1673–1681.
[17]  Kao YH, Hock Tan AE, Burgmans MC, Irani FG, Khoo LS, et al. (2012) Image-guided personalized predictive dosimetry by artery-specific SPECT/CT partition modeling for safe and effective 90Y radioembolization. J Nucl Med 53: 559–566.
[18]  Smits ML, Elschot M, van den Bosch MA, van de Maat GH, van Het Schip AD, et al.. (2013) In Vivo Dosimetry Based on SPECT and MR Imaging of 166Ho-Microspheres for Treatment of Liver Malignancies. J Nucl Med.
[19]  Burke D, Davies MM, Zweit J, Flower MA, Ott RJ, et al. (2001) Continuous angiotensin II infusion increases tumour: normal blood flow ratio in colo-rectal liver metastases. Br J Cancer 85: 1640–1645.
[20]  Ashraf S, Crowe R, Loizidou MC, Turmaine M, Taylor I, et al. (1996) The absence of autonomic perivascular nerves in human colorectal liver metastases. Br J Cancer 73: 349–359.
[21]  Hafstrom L, Nobin A, Persson B, Sundqvist K (1980) Effects of catecholamines on cardiovascular response and blood flow distribution to normal tissue and liver tumors in rats. Cancer Res 40: 481–485.
[22]  Wright KC, Ravoori MK, Dixon KA, Han L, Singh SP, et al. (2011) Perfusion CT assessment of tissue hemodynamics following hepatic arterial infusion of increasing doses of angiotensin II in a rabbit liver tumor model. Radiology 260: 718–726.
[23]  Shankar A, Loizidou M, Burnstock G, Taylor I (1999) Noradrenaline improves the tumour to normal blood flow ratio and drug delivery in a model of liver metastases. Br J Surg 86: 453–457.
[24]  Wu Y, Sitzmann JV (1996) Pharmacokinetics of regional angiotensin-II: a novel biologic response modifier. Ann Surg Oncol 3: 24–28.
[25]  Sasaki Y, Imaoka S, Hasegawa Y, Nakano S, Ishikawa O, et al. (1985) Changes in distribution of hepatic blood flow induced by intra-arterial infusion of angiotensin II in human hepatic cancer. Cancer 55: 311–316.
[26]  Taubman MB (2003) Angiotensin II: a vasoactive hormone with ever-increasing biological roles. Circ Res 92: 9–11.
[27]  Van de Wiele C, Maes A, Brugman E, D'Asseler Y, De Spiegeleer B, et al. (2012) SIRT of liver metastases: physiological and pathophysiological considerations. Eur J Nucl Med Mol Imaging 39: 1646–1655.
[28]  Stubbs RS, Cannan RJ, Mitchell AW (2001) Selective internal radiation therapy with 90yttrium microspheres for extensive colorectal liver metastases. J Gastrointest Surg 5: 294–302.
[29]  Stubbs RS, O'Brien I, Correia MM (2006) Selective internal radiation therapy with 90Y microspheres for colorectal liver metastases: single-centre experience with 100 patients. ANZ J Surg 76: 696–703.
[30]  Boppudi S, Wickremesekera SK, Nowitz M, Stubbs R (2006) Evaluation of the role of CT in the assessment of response to selective internal radiation therapy in patients with colorectal liver metastases. Australas Radiol 50: 570–577.
[31]  Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6: e1000097.
[32]  von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, et al. (2007) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370: 1453–1457.
[33]  Goldberg JA, Murray T, Kerr DJ, Willmott N, Bessent RG, et al. (1991) The use of angiotensin II as a potential method of targeting cytotoxic microspheres in patients with intrahepatic tumour. Br J Cancer 63: 308–310.
[34]  Goldberg JA, Thomson JA, Bradnam MS, Fenner J, Bessent RG, et al. (1991) Angiotensin II as a potential method of targeting cytotoxic-loaded microspheres in patients with colorectal liver metastases. Br J Cancer 64: 114–119.
[35]  Flower MA, Zweit J, Hall AD, Burke D, Davies MM, et al. (2001) 62Cu-PTSM and PET used for the assessment of angiotensin II-induced blood flow changes in patients with colorectal liver metastases. Eur J Nucl Med 28: 99–103.
[36]  Ishikawa T, Ushiki T, Kamimura H, Togashi T, Tsuchiya A, et al. (2007) Angiotensin-II administration is useful for the detection of liver metastasis from pancreatic cancer during pharmacoangiographic computed tomography. World J Gastroenterol 13: 3080–3083.
[37]  Lawrence TS, Robertson JM, Anscher MS, Jirtle RL, Ensminger WD, et al. (1995) Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys 31: 1237–1248.
[38]  Campbell AM, Bailey IH, Burton MA (2001) Tumour dosimetry in human liver following hepatic yttrium-90 microsphere therapy. Phys Med Biol 46: 487–498.
[39]  Lau WY, Leung WT, Ho S, Leung NW, Chan M, et al. (1994) Treatment of inoperable hepatocellular carcinoma with intrahepatic arterial yttrium-90 microspheres: a phase I and II study. Br J Cancer 70: 994–999.
[40]  Wang XD, Yang RJ, Cao XC, Tan J, Li B (2010) Dose delivery estimated by bremsstrahlung imaging and partition model correlated with response following intra-arterial radioembolization with 32P-glass microspheres for the treatment of hepatocellular carcinoma. J Gastrointest Surg 14: 858–866.
[41]  Walrand S, Lhommel R, Goffette P, Van den Eynde M, Pauwels S, et al. (2012) Hemoglobin level significantly impacts the tumor cell survival fraction in humans after internal radiotherapy. EJNMMI Res 2: 20.
[42]  Kao YH, Steinberg JD, Tay YS, Lim GK, Yan J, et al. (2013) Post-radioembolization yttrium-90 PET/CT - part 2: dose-response and tumor predictive dosimetry for resin microspheres. EJNMMI Res 3: 57.
[43]  Kojiro M (2009) Pathology of hepatocellular carcinoma: Wiley.com.
[44]  Kamaya A, Maturen KE, Tye GA, Liu YI, Parti NN, et al. (2009) Hypervascular liver lesions. Semin Ultrasound CT MR 30: 387–407.
[45]  He B, Frey EC (2010) The impact of 3D volume of interest definition on accuracy and precision of activity estimation in quantitative SPECT and planar processing methods. Phys Med Biol 55: 3535–3544.
[46]  Lam MG, Goris ML, Iagaru AH, Mittra ES, Louie JD, et al.. (2013) Prognostic Utility of 90Y Radioembolization Dosimetry Based on Fusion 99mTc-Macroaggregated Albumin-99mTc-Sulfur Colloid SPECT. J Nucl Med.
[47]  Ahn SS, Kim MJ, Lim JS, Hong HS, Chung YE, et al. (2010) Added value of gadoxetic acid-enhanced hepatobiliary phase MR imaging in the diagnosis of hepatocellular carcinoma. Radiology 255: 459–466.
[48]  Gates VL, Esmail AA, Marshall K, Spies S, Salem R (2011) Internal pair production of 90Y permits hepatic localization of microspheres using routine PET: proof of concept. J Nucl Med 52: 72–76.
[49]  Wissmeyer M, Heinzer S, Majno P, Buchegger F, Zaidi H, et al. (2011) Y Time-of-flight PET/MR on a hybrid scanner following liver radioembolisation (SIRT). Eur J Nucl Med Mol Imaging 38: 1744–1745.
[50]  Elschot M, Vermolen BJ, Lam MG, de Keizer B, van den Bosch MA, et al. (2013) Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization. PLoS One 8: e55742.
[51]  Smits ML, Nijsen JF, van den Bosch MA, Lam MG, Vente MA, et al.. (2012) Holmium-166 radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): a phase 1, dose-escalation study. Lancet Oncol.
[52]  Smits ML, Nijsen JF, van den Bosch MA, Lam MG, Vente MA, et al. (2010) Holmium-166 radioembolization for the treatment of patients with liver metastases: design of the phase I HEPAR trial. J Exp Clin Cancer Res 29: 70.
[53]  de Wit TC, Xiao J, Nijsen JF, van het Schip FD, Staelens SG, et al. (2006) Hybrid scatter correction applied to quantitative holmium-166 SPECT. Phys Med Biol 51: 4773–4787.
[54]  Vente MA, Nijsen JF, de Wit TC, Seppenwoolde JH, Krijger GC, et al. (2008) Clinical effects of transcatheter hepatic arterial embolization with holmium-166 poly(L-lactic acid) microspheres in healthy pigs. Eur J Nucl Med Mol Imaging 35: 1259–1271.
[55]  Nijsen JF, Seppenwoolde JH, Havenith T, Bos C, Bakker CJ, et al. (2004) Liver tumors: MR imaging of radioactive holmium microspheres–phantom and rabbit study. Radiology 231: 491–499.
[56]  Seevinck PR, van de Maat GH, de Wit TC, Vente MA, Nijsen JF, et al. (2012) Magnetic resonance imaging-based radiation-absorbed dose estimation of 166Ho microspheres in liver radioembolization. Int J Radiat Oncol Biol Phys 83: e437–444.
[57]  Piana PM, Bar V, Doyle L, Anne R, Sato T, et al.. (2013) Early arterial stasis during resin-based yttrium-90 radioembolization: incidence and preliminary outcomes. HPB (Oxford).

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413