全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Arctigenin Inhibits Osteoclast Differentiation and Function by Suppressing Both Calcineurin-Dependent and Osteoblastic Cell-Dependent NFATc1 Pathways

DOI: 10.1371/journal.pone.0085878

Full-Text   Cite this paper   Add to My Lib

Abstract:

Arctigenin, a lignan-derived compound, is a constituent of the seeds of Arctium lappa. Arctigenin was previously shown to inhibit osteoclastogenesis; however, this inhibitory mechanism has yet to be elucidated. Here, we showed that arctigenin inhibited the action of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key transcription factor for osteoclastogenesis. NFATc1 in osteoclast precursors was activated through two distinct pathways: the calcineurin-dependent and osteoblastic cell-dependent pathways. Among the several lignan-derived compounds examined, arctigenin most strongly inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast-like cell formation in mouse bone marrow macrophage (BMM) cultures, in which the calcineurin-dependent NFATc1 pathway was activated. Arctigenin suppressed neither the activation of nuclear factor κB and mitogen-activated protein kinases nor the up-regulation of c-Fos expression in BMMs treated with RANKL. However, arctigenin suppressed RANKL-induced NFATc1 expression. Interestingly, the treatment of osteoclast-like cells with arctigenin converted NFATc1 into a lower molecular weight species, which was translocated into the nucleus even in the absence of RANKL. Nevertheless, arctigenin as well as cyclosporin A (CsA), a calcineurin inhibitor, suppressed the NFAT-luciferase reporter activity induced by ionomycin and phorbol 12-myristate 13-acetate in BMMs. Chromatin immunoprecipitation analysis confirmed that arctigenin inhibited the recruitment of NFATc1 to the promoter region of the NFATc1 target gene. Arctigenin, but not CsA suppressed osteoclast-like cell formation in co-cultures of osteoblastic cells and bone marrow cells, in which the osteoblastic cell-dependent NFATc1 pathway was activated. The forced expression of constitutively active NFATc1 rescued osteoclastogenesis in BMM cultures treated with CsA, but not that treated with arctigenin. Arctigenin also suppressed the pit-forming activity of osteoclast-like cells cultured on dentin slices. These results suggest that arctigenin induces a dominant negative species of NFATc1, which inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways.

References

[1]  Awale S, Lu J, Kalauni SK, Kurashima Y, Tezuka Y, et al. (2006) Identification of arctigenin as an antitumor agent having the ability to eliminate the tolerance of cancer cells to nutrient starvation. Cancer Res 66: 1751–1757.
[2]  Kudou N, Taniguchi A, Sugimoto K, Matsuya Y, Kawasaki M, et al. (2012) Synthesis and antitumor evaluation of arctigenin derivatives based on antiausterity strategy. Eur J Med Chem 60C: 76–88.
[3]  Cho MK, Jang YP, Kim YC, Kim SG (2004) Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits MAP kinases and AP-1 activation via potent MKK inhibition: the role in TNF-alpha inhibition. Int Immunopharmacol 4: 1419–1429.
[4]  Kou X, Qi S, Dai W, Luo L, Yin Z (2011) Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway. Int Immunopharmacol 11: 1095–1102.
[5]  Kim AR, Kim HS, Lee JM, Choi JH, Kim SN, et al. (2012) Arctigenin suppresses receptor activator of nuclear factor kappaB ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages. Eur J Pharmacol 682: 29–36.
[6]  Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423: 337–342.
[7]  Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, et al. (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20: 345–357.
[8]  Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, et al. (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhib?itoryfactor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95: 3597–3602.
[9]  Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, et al. (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93: 165–176.
[10]  Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, et al. (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397: 315–323.
[11]  Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, et al. (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A 96: 3540–3545.
[12]  Tanaka S, Takahashi N, Udagawa N, Tamura T, Akatsu T, et al. (1993) Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest 91: 257–263.
[13]  Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, et al. (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89: 309–319.
[14]  Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, et al. (1998) Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139: 1329–1337.
[15]  Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, et al. (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3: 889–901.
[16]  Matsumoto M, Kogawa M, Wada S, Takayanagi H, Tsujimoto M, et al. (2004) Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J Biol Chem 279: 45969–45979.
[17]  Kim Y, Sato K, Asagiri M, Morita I, Soma K, et al. (2005) Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis. J Biol Chem 280: 32905–32913.
[18]  Ishida N, Hayashi K, Hoshijima M, Ogawa T, Koga S, et al. (2002) Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J Biol Chem 277: 41147–41156.
[19]  Cella M, Buonsanti C, Strader C, Kondo T, Salmaggi A, et al. (2003) Impaired differentiation of osteoclasts in TREM-2-deficient individuals. J Exp Med 198: 645–651.
[20]  Paloneva J, Mandelin J, Kiialainen A, Bohling T, Prudlo J, et al. (2003) DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features. J Exp Med 198: 669–675.
[21]  Mocsai A, Humphrey MB, Van Ziffle JA, Hu Y, Burghardt A, et al. (2003) The immunomodulatory adapter proteins DAP12 and Fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc Natl Acad Sci USA 101: 6158–6163.
[22]  Koga T, Inui M, Inoue K, Kim S, Suematsu A, et al. (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428: 758–763.
[23]  Barrow AD, Raynal N, Andersen TL, Slatter DA, Bihan D, et al. (2011) OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice. J Clin Invest 121: 3505–3516.
[24]  Kuroda Y, Hisatsune C, Nakamura T, Matsuo K, Mikoshiba K (2008) Osteoblasts induce Ca2+ oscillation-independent NFATc1 activation during osteoclastogenesis. Proc Natl Acad Sci U S A 105: 8643–8648.
[25]  Kuroda Y, Hisatsune C, Mizutani A, Ogawa N, Matsuo K, et al. (2012) Cot kinase promotes Ca2+ oscillation/calcineurin-independent osteoclastogenesis by stabilizing NFATc1 protein. Mol Cell Biol 32: 2954–2963.
[26]  Mizoguchi T, Muto A, Udagawa N, Arai A, Yamashita T, et al. (2009) Identification of cell cycle-arrested quiescent osteoclast precursors in vivo. J Cell Biol 184: 541–554.
[27]  Takahashi N, Udagawa N, Kobayashi Y, Suda T (2007) Generation of osteoclasts in vitro, and assay of osteoclast activity. Methods Mol Med 135: 285–301.
[28]  Koide M, Kinugawa S, Ninomiya T, Mizoguchi T, Yamashita T, et al. (2009) Diphenylhydantoin inhibits osteoclast differentiation and function through suppression of NFATc1 signaling. J Bone Miner Res 24: 1469–1480.
[29]  Ishida N, Hayashi K, Hattori A, Yogo K, Kimura T, et al. (2006) CCR1 acts downstream of NFAT2 in osteoclastogenesis and enhances cell migration. J Bone Miner Res 21: 48–57.
[30]  Morita S, Kojima T, Kitamura T (2000) Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7: 1063–1066.
[31]  Asagiri M, Sato K, Usami T, Ochi S, Nishina H, et al. (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202: 1261–1269.
[32]  Jimi E, Akiyama S, Tsurukai T, Okahashi N, Kobayashi K, et al. (1999) Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J Immunol 163: 434–442.
[33]  Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M (2000) Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J Biol Chem 275: 31155–31161.
[34]  Li X, Udagawa N, Itoh K, Suda K, Murase Y, et al. (2002) p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinology 143: 3105–3113.
[35]  Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15: 707–747.
[36]  Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17: 2205–2232.
[37]  Beals CR, Clipstone NA, Ho SN, Crabtree GR (1997) Nuclear localization of NF-ATc by a calcineurin-dependent, cyclosporin-sensitive intramolecular interaction. Genes Dev 11: 824–834.
[38]  Patra AK, Avots A, Zahedi RP, Schuler T, Sickmann A, et al. (2013) An alternative NFAT-activation pathway mediated by IL-7 is critical for early thymocyte development. Nat Immunol 14: 127–135.
[39]  Jeong JB, Hong SC, Jeong HJ, Koo JS (2011) Arctigenin induces cell cycle arrest by blocking the phosphorylation of Rb via the modulation of cell cycle regulatory proteins in human gastric cancer cells. Int Immunopharmacol 11: 1573–1577.
[40]  Huang SL, Yu RT, Gong J, Feng Y, Dai YL, et al. (2012) Arctigenin, a natural compound, activates AMP-activated protein kinase via inhibition of mitochondria complex I and ameliorates metabolic disorders in ob/ob mice. Diabetologia 55: 1469–1481.
[41]  Kim Y, Hollenbaugh JA, Kim DH, Kim B (2011) Novel PI3K/Akt inhibitors screened by the cytoprotective function of human immunodeficiency virus type 1 Tat. PLoS One 6: e21781.
[42]  Tang X, Zhuang J, Chen J, Yu L, Hu L, et al. (2011) Arctigenin efficiently enhanced sedentary mice treadmill endurance. PLoS One 6: e24224.
[43]  Macian F (2005) NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 5: 472–484.
[44]  Macian F, Garcia-Rodriguez C, Rao A (2000) Gene expression elicited by NFAT in the presence or absence of cooperative recruitment of Fos and Jun. EMBO J 19: 4783–4795.
[45]  Komarova SV, Pereverzev A, Shum JW, Sims SM, Dixon SJ (2005) Convergent signaling by acidosis and receptor activator of NF-kappaB ligand (RANKL) on the calcium/calcineurin/NFAT pathway in osteoclasts. Proc Natl Acad Sci U S A 102: 2643–2648.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413