全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Genome-Wide Analysis of the MADS-Box Gene Family in Brachypodium distachyon

DOI: 10.1371/journal.pone.0084781

Full-Text   Cite this paper   Add to My Lib

Abstract:

MADS-box genes are important transcription factors for plant development, especially floral organogenesis. Brachypodium distachyon is a model for biofuel plants and temperate grasses such as wheat and barley, but a comprehensive analysis of MADS-box family proteins in Brachypodium is still missing. We report here a genome-wide analysis of the MADS-box gene family in Brachypodium distachyon. We identified 57 MADS-box genes and classified them into 32 MIKCc-type, 7 MIKC*-type, 9 Mα, 7 Mβ and 2 Mγ MADS-box genes according to their phylogenetic relationships to the Arabidopsis and rice MADS-box genes. Detailed gene structure and motif distribution were then studied. Investigation of their chromosomal localizations revealed that Brachypodium MADS-box genes distributed evenly across five chromosomes. In addition, five pairs of type II MADS-box genes were found on synteny blocks derived from whole genome duplication blocks. We then performed a systematic expression analysis of Brachypodium MADS-box genes in various tissues, particular floral organs. Further detection under salt, drought, and low-temperature conditions showed that some MADS-box genes may also be involved in abiotic stress responses, including type I genes. Comparative studies of MADS-box genes among Brachypodium, rice and Arabidopsis showed that Brachypodium had fewer gene duplication events. Taken together, this work provides useful data for further functional studies of MADS-box genes in Brachypodium distachyon.

References

[1]  Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, et al. (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proceedings of the National Academy of Sciences 97: 5328–5333.
[2]  Causier B, Kieffer M, Davies B (2002) MADS-box genes reach maturity. Science 296: 275–276.
[3]  Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200–203.
[4]  Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, et al. (2000) A short history of MADS-box genes in plants. Plant Molecular Biology 42: 115–149.
[5]  Bowman JL, Drews GN, Meyerowitz EM (1991) Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant Cell 3: 749–758.
[6]  Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353: 31–37.
[7]  Angenent GC, Colombo L (1996) Molecular control of ovule development. Trends in Plant Science 1: 228–232.
[8]  Ma H, dePamphilis C (2000) The ABCs of floral evolution. Cell 101: 5–8.
[9]  Colombo L, Franken J, Koetje E, van Went J, Dons H, et al. (1995) The Petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7: 1859–1868.
[10]  Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, et al. (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35–39.
[11]  Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78: 203–209.
[12]  Kaufmann K, Melzer R, Theiβen G (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347: 183–198.
[13]  Hartmann U, H?hmann S, Nettesheim K, Wisman E, Saedler H, et al. (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. The Plant Journal 21: 351–360.
[14]  Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149: 765–783.
[15]  Adamczyk BJ, Fernandez DE (2009) MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiology 149: 1713–1723.
[16]  Henschel K, Kofuji R, Hasebe M, Saedler H, Münster T, et al. (2002) Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Molecular Biology and Evolution 19: 801–814.
[17]  De Bodt S, Raes J, Florquin K, Rombauts S, Rouzé P, et al. (2003) Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. Journal of Molecular Evolution 56: 573–586.
[18]  Pa?enicová L, de Folter S, Kieffer M, Horner DS, Favalli C, et al. (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15: 1538–1551.
[19]  Nam J, Kim J, Lee S, An G, Ma H, et al. (2004) Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proceedings of the National Academy of Sciences 101: 1910–1915.
[20]  Fan CM, Wang X, Wang YW, Hu RB, Zhang XM, et al. (2013) Genome-wide expression analysis of soybean MADS genes showing potential function in the seed development. PLoS ONE 8: e62288.
[21]  Hu L, Liu S (2012) Genome-wide analysis of the MADS-box gene family in cucumber. Genome 55: 245–256.
[22]  Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, et al. (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nature Genetics 42: 833–839.
[23]  Arora R, Agarwal P, Ray S, Singh AK, Singh VP, et al. (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8: 242.
[24]  Leseberg CH, Li A, Kang H, Duvall M, Mao L (2006) Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 378: 84–94.
[25]  Wei B, Cai T, Zhang R, Li A, Huo N, et al. (2009) Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Functional & Integrative Genomics 9: 499–511.
[26]  Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882.
[27]  Wei B, Liu D, Guo J, Leseberg CH, Zhang X, et al. (2013) Functional divergence of two duplicated D-lineage MADS-box genes BdMADS2 and BdMADS4 from Brachypodium distachyon. Journal of Plant Physiology 170: 424–431.
[28]  Burland T (1999) Bioinformatics methods and protocols. Humana Press 71–91 p.
[29]  Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9: 299–306.
[30]  Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425.
[31]  Guo A, Zhu Q, Chen X, Luo J (2007) GSDS: a gene structure display server. Yi Chuan 29: 1023–1026.
[32]  Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37: W202–208.
[33]  Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: Identification of signaling domains. Proceedings of the National Academy of Sciences 95: 5857–5864.
[34]  Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Research 40: D302–305.
[35]  Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research 34: W609–612.
[36]  Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24: 1586–1591.
[37]  Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290: 1151–1155.
[38]  Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL.. Proceedings of the National Academy of Sciences 93: 10274–10279.
[39]  Hong S, Seo P, Yang M, Xiang F, Park C (2008) Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biology 8: 1–11.
[40]  Liu C, Teo ZWN, Bi Y, Song S, Xi W, et al. (2013) A conserved genetic pathway determines inflorescence architecture in Arabidopsis and rice. Developmental cell 24: 612–622.
[41]  Sang X, Li Y, Luo Z, Ren D, Fang L, et al. (2012) CHIMERIC FLORAL ORGANS1, encoding a monocot-specific MADS box protein, regulates floral organ identity in rice. Plant Physiology 160: 788–807.
[42]  Ma H, Yanofsky MF, Meyerowitz EM (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes & Development 5: 484–495.
[43]  Fischer A, Baum N, Saedler H, Theiβen G (1995) Chromosomal mapping of the MADS-box multigene family in Zea mays reveals dispersed distribution of allelic genes as well as transposed copies. Nucleic Acids Research 23: 1901–1911.
[44]  Davies B, Egea-Cortines M, de Andrade Silva E, Saedler H, Sommer H (1996) Multiple interactions amongst floral homeotic MADS box proteins. The EMBO journal 15: 4330–4343.
[45]  Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G, et al. (2006) Functional diversification of the two C-class MADS box genes OsMADS3 and OsMADS58 in Oryza sativa.. Plant Cell 18: 15–28.
[46]  Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279: 407–409.
[47]  Shan H, Zahn L, Guindon S, Wall PK, Kong H, et al. (2009) Evolution of plant MADS box transcription factors: evidence for shifts in selection associated with early angiosperm diversification and concerted gene duplications. Molecular Biology and Evolution 26: 2229–2244.
[48]  Airoldi CA, Davies B (2012) Gene duplication and the evolution of plant MADS-box transcription factors. Journal of Genetics and Genomics 39: 157–165.
[49]  Lee HL, Irish VF (2011) Gene duplication and loss in a MADS box gene transcription factor circuit. Molecular Biology and Evolution 28: 3367–3380.
[50]  Eckardt NA (2008) Grass genome evolution. The Plant Cell Online 20: 3–4.
[51]  Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytologist 154: 15–28.
[52]  Initiative TIB (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463: 763–768.
[53]  Lee JH, Park SH, Ahn JH (2012) Functional conservation and diversification between rice OsMADS22/OsMADS55 and Arabidopsis SVP proteins. Plant Science 185–186: 97–104.
[54]  Lee S, Choi SC, An G (2008) Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassinosteroid responses. The Plant Journal 54: 93–105.
[55]  Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proceedings of the National Academy of Sciences 101: 9903–9908.
[56]  Yu J, Wang J, Lin W, Li S, Li H, et al. (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3: e38.
[57]  Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES (2000) The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC). Proceedings of the National Academy of Sciences 97: 3753–3758.
[58]  Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11: 949–956.
[59]  Becker A, Theiβen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution 29: 464–489.
[60]  Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control vernalization-induced flowering in cereals. Proceedings of the National Academy of Sciences 100: 13099–13104.
[61]  Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, et al. (2003) Positional cloning of the wheat vernalization gene VRN1.. Proceedings of the National Academy of Sciences 100: 6263–6268.
[62]  Guo X, Xu G, Zhang Y, Hu W, Fan L (2004) Small-scale duplications play a significant role in rice genome evolution. Rice Sinence 12: 173–178.
[63]  Alejandra Mandel M, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1.. Nature 360: 273–277.
[64]  Fornara F, Parenicova L, Falasca G, Pelucchi N, Masiero S, et al. (2004) Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiology 135: 2207–2219.
[65]  Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes & Development 8: 1548–1560.
[66]  Yao S, Ohmori S, Kimizu M, Yoshida H (2008) Unequal genetic redundancy of rice PISTILLATA orthologs, OsMADS2 and OsMADS4, in lodicule and stamen development. Plant and Cell Physiology 49: 853–857.
[67]  Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683–697.
[68]  Xiao H, Wang Y, Liu D, Wang W, Li X, et al. (2003) Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference. Plant Molecular Biology 52: 957–966.
[69]  Nayar S, Sharma R, Tyagi AK, Kapoor S (2013) Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis. Journal of Experimental Botany doi:10.1093/jxb/ert231.
[70]  Zhao T, Ni Z, Dai Y, Yao Y, Nie X, et al. (2006) Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). Molecular Genetics and Genomics 276: 334–350.
[71]  Masiero S, Colombo L, Grini PE, Schnittger A, Kater MM (2011) The emerging importance of type I MADS box transcription factors for plant reproduction. Plant Cell 23: 865–872.
[72]  Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, et al. (2011) Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. PLoS Genet 7: e1002014.
[73]  Kang IH, Steffen JG, Portereiko MF, Lloyd A, Drews GN (2008) The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis. Plant Cell 20: 635–647.
[74]  Bemer M, Wolters-Arts M, Grossniklaus U, Angenent GC (2008) The MADS domain protein DIANA acts together with AGAMOUS-LIKE80 to specify the central cell in Arabidopsis ovules. Plant Cell 20: 2088–2101.
[75]  Portereiko MF, Lloyd A, Steffen JG, Punwani JA, Otsuga D, et al. (2006) AGL80 is required for central cell and endosperm development in Arabidopsis. Plant Cell 18: 1862–1872.
[76]  Wuest SE, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, et al. (2010) Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Current biology 20: 506–512.
[77]  Tiwari S, Spielman M, Schulz R, Oakey R, Kelsey G, et al. (2010) Transcriptional profiles underlying parent-of-origin effects in seeds of Arabidopsis thaliana.. BMC Plant Biology 10: 1–22.
[78]  Day RC, Herridge RP, Ambrose BA, Macknight RC (2008) Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation. Plant Physiology 148: 1964–1984.
[79]  Díaz-Riquelme J, Lijavetzky D, Martínez-Zapater JM, Carmona MJ (2009) Genome-wide analysis of MIKCc-type MADS box genes in Grapevine. Plant Physiology 149: 354–369.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133