全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Effect of Ensiled Mulberry Leaves and Sun-Dried Mulberry Fruit Pomace on Finishing Steer Growth Performance, Blood Biochemical Parameters, and Carcass Characteristics

DOI: 10.1371/journal.pone.0085406

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fifty-one Simmental crossbred steers (357.0±16.5 kg) were used to compare a standard total mix ration (TMR) with variants on animal performance, ruminal fermentation, blood biochemical parameters, and carcass characteristics. Corn grain and cotton seed meal were partially replaced by ensiled mulberry leaves (EML) or sun-dried mulberry fruit pomace (SMFP). Experimental diets had similar amounts of crude protein (CP), acid detergent fiber (ADF), and metabolizable energy (ME). Animals were divided into three groups: control group (CONT), 8% EML group, and 6.3% SMFP group. Performance, including average daily weight gain (ADG), and dry matter intake (DMI), was measured. Blood and rumen samples were collected at the end of the experiment (16 weeks). There were no differences in final body weight (P = 0.743), ADG (P = 0.425), DMI (P = 0.642), or ADG/DMI (P = 0.236) between the groups. There were no differences (P = 0.2024) in rumen pH values; ammonia N was lower (P = 0.0076) in SMFP than in the EML and CONT groups. There were differences in the concentrations of total and individual volatile fatty acids, while no differences were determined in blood biochemical parameters (i.e., plasma glucose, urea concentrations, triglycerides, total protein, insulin, IgG, alanine transaminase, and aspartate aminotransferase, P ≥ 0.098). No differences were observed in carcass characteristics (P ≥ 0.513), tenderness (P = 0.844), adipose and lean color values (P ≥ 0.149), and chemical composition (P ≥ 0.400); however, intramuscular fat was lower in the EML and SMFP groups compared to the CONT animals (P = 0.034). In conclusion, diets supplemented with these two mulberry products in an isocaloric and isonitrogenous manner have similar effects to corn grain and cotton seed meals on steer performance, blood biochemical parameters and carcass characteristics, with the exception of ruminal VFA concentrations and lower intramuscular fat content.

References

[1]  Taasoli G, Kafilzadeh F (2008) Effects of dried and ensiled apple pomace from puree making on performance of finishing lambs. Pak J Biol Sci 11: 294–297.
[2]  Weiss WP, Frobose DL, Koch ME (1997) Wet tomato pomace ensiled with corn plants for dairy cows. J Dairy Sci 80: 2896–2900.
[3]  Romero-Huelva M, Ramos-Morales E, Molina-Alcaide E (2012) Nutrient utilization, ruminal fermentation, microbial abundances, and milk yield and composition in dairy goats fed diets including tomato and cucumber waste fruits. J Dairy Sci 95: 6015–6026.
[4]  Liu JX, Yao J, Yan B, Yu JQ, Shi ZQ (2001) Effects of mulberry leaves to replace rapeseed meal on performance of sheep feeding on ammoniated rice straw diet. Small Rumin Res 39: 131–136.
[5]  Zou Y, Liao S, Shen W, Liu F, Tang C, et al. (2012) Phenolics and antioxidant activity of mulberry leaves depend on cultivar and harvest month in southern china. Int J Mol Sci 13: 16544–16553.
[6]  Choi J, Kang HJ, Kim SZ, Kwon TO, Jeong SI, et al. (2013) Antioxidant effect of astragalin isolated from the leaves of Morus alba L. against free radical-induced oxidative hemolysis of human red blood cells. Arch Pharm Res.
[7]  Wang W, Zu Y, Fu Y, Efferth T (2012) In vitro antioxidant and antimicrobial activity of extracts from Morus alba L. leaves, stems and fruits. Am J Chin Med 40: 349–356.
[8]  Chen J, Li X (2007) Hypolipidemic effect of flavonoids from mulberry leaves in triton WR-1339 induced hyperlipidemic mice. Asia Pac J Clin Nutr 16 Suppl 1290–294.
[9]  Vu CC, Verstegen MWA, Hendriks WH, Pham KC (2011) The Nutritive Value of Mulberry Leaves (Morus alba) and Partial Replacement of Cotton Seed in Rations on the Performance of Growing Vietnamese Cattle. Asian-Australasian Journal of Animal Sciences 24: 1233–1242.
[10]  Deshmukh SV, Pathak NN, Takalikar DA, Digraskar SU (1993) Nutritional effect of mulberry ( Morus alba) leaves as sole ration of adult rabbits. World Rabbit Science 1: 67–69.
[11]  Salinas-Chavira J, Castillo-Martinez O, Ramirez-Bribiesca JE, Mellado M (2011) Effect of increasing levels of white mulberry leaves (Morus alba) on ruminal dry matter degradability in lambs. Tropical Animal Health and Production 43: 995–999.
[12]  Doran MP, Laca EA, Sainz RD (2007) Total tract and rumen digestibility of mulberry foliage (Morus alba), alfalfa hay and oat hay in sheep. Animal Feed Science and Technology 138: 239–253.
[13]  Zhou B, Meng QX, Ren LP, Shi FH, Wei Z, et al. (2012) Evaluation of chemical composition, in situ degradability and in vitro gas production of ensiled and sun-dried mulberry pomace. Journal of Animal and Feed Sciences 21: 188–197.
[14]  Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74: 3583–3597.
[15]  Xue F, Zhou Z, Ren L, Meng Q (2011) Influence of rumen-protected lysine supplementation on growth performance and plasma amino acid concentrations in growing cattle offered the maize stalk silage/maize grain-based diet. Animal Feed Science and Technology 169: 61–67.
[16]  Min BR, Solaiman S, Gurung N, Behrends J, Eun JS, et al. (2012) Effects of pine bark supplementation on performance, rumen fermentation, and carcass characteristics of Kiko crossbred male goats. J Anim Sci 90: 3556–3567.
[17]  Li YL, Meng QX (2006) Effect of different types of fibre supplemented with sunflower oil on ruminal fermentation and production of conjugated linoleic acids in vitro. Archives of Animal Nutrition 60: 402–411.
[18]  Minolta (1994) Precise color communications: color control from feeling to instrumentation. Minolta Co Ltd, Ramsey, NJ.
[19]  Arnett EJ, Fluharty FL, Loerch SC, Zerby HN, Zinn RA, et al. (2012) Effects of forage level in feedlot finishing diets on carcass characteristics and palatability of Jersey beef. J Anim Sci 90: 960–972.
[20]  Todaro M, Sinacori A, Marinaro G, Alicata ML, Giaccone P (2007) Palatability and in vivo digestibility of mulberry leaves (Morus latifolia CV. Kokusou 21) in sheep feeding. Journal of Animal and Veterinary Advances 6: 509–512.
[21]  Cheong SH, Kim KH, Jeon BT, Park PJ, Hwang IH, et al. (2012) Effect of mulberry silage supplementation during late fattening stage of Hanwoo (Bos taurus coreanae) steer on antioxidative enzyme activity within the longissimus muscle. Animal Production Science 52: 240–247.
[22]  Isabelle M, Lee BL, Ong CN, Liu X, Huang D (2008) Peroxyl radical scavenging capacity, polyphenolics, and lipophilic antioxidant profiles of mulberry fruits cultivated in southern China. J Agric Food Chem 56: 9410–9416.
[23]  Salinas-Chavira J, Castillo-Martinez O, Ramirez-Bribiesca JE, Mellado M (2011) Effect of increasing levels of white mulberry leaves (Morus alba) on ruminal dry matter degradability in lambs. Trop Anim Health Prod 43: 995–999.
[24]  Johnson DD, Mitchell GE Jr, Tucker RE, Hemken RW (1982) Plasma glucose and insulin responses to propionate in preruminating calves. J Anim Sci 55: 1224–1230.
[25]  Butkhup L, Samappito W, Samappito S (2013) Phenolic composition and antioxidant activity of white mulberry (Morus alba L.) fruits. International Journal of Food Science and Technology 48: 934–940.
[26]  Min BR, Attwood GT, Reilly K, Sun W, Peters JS, et al. (2002) Lotus corniculatus condensed tannins decrease in vivo populations of proteolytic bacteria and affect nitrogen metabolism in the rumen of sheep. Canadian Journal of Microbiology 48: 911–921.
[27]  Min BR, McNabb WC, Barry TN, Peters JS (2000) Solubilization and degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39; Rubisco) protein from white clover (Trifolium repens) and Lotus corniculatus by rumen microorganisms and the effect of condensed tannins on these processes. Journal of Agricultural Science 134: 305–317.
[28]  Bailey EA, Titgemeyer EC, Olson KC, Brake DW, Jones ML, et al. (2012) Effects of ruminal casein and glucose on forage digestion and urea kinetics in beef cattle. Journal of Animal Science 90: 3505–3514.
[29]  Lopez-Campos O, Bodas R, Prieto N, Frutos P, Andres S, et al. (2011) Vinasse added to the concentrate for fattening lambs: Intake, animal performance, and carcass and meat characteristics. Journal of Animal Science 89: 1153–1162.
[30]  Bailey EA, Titgemeyer EC, Olson KC, Brake DW, Jones ML, et al. (2012) Effects of supplemental energy and protein on forage digestion and urea kinetics in growing beef cattle. Journal of Animal Science 90: 3492–3504.
[31]  Aschenbach JR, Kristensen NB, Donkin SS, Hammon HM, Penner GB (2010) Gluconeogenesis in Dairy Cows: The Secret of Making Sweet Milk from Sour Dough. Iubmb Life 62: 869–877.
[32]  Winkelman LA, Overton TR (2012) The effects of increasing doses of 2 preparations of long-acting insulin on short-term plasma profiles of glucose and insulin in lactating dairy cows. Journal of Dairy Science 95: 6974–6982.
[33]  Mao S, Zhang R, Wang D, Zhu W (2012) The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows. BMC Veterinary Research 8: (6 December 2012)-(2016 December 2012).
[34]  Tesseraud S, Metayer S, Duchene S, Bigot K, Grizard J, et al. (2007) Regulation of protein metabolism by insulin: Value of different approaches and animal models. Domestic Animal Endocrinology 33: 123–142.
[35]  Laarveld B, Christensen DA, Brockman RP (1981) The effect of insulin on net metabolism of glucose and amino acids by the bovine mammary gland. Endocrinology 108: 2217–2221.
[36]  Sagdic O, Ozturk I, Yilmaz MT, Yetim H (2011) Effect of Grape Pomace Extracts Obtained from Different Grape Varieties on Microbial Quality of Beef Patty. Journal of Food Science 76: M515–M521.
[37]  Hogan S, Zhang L, Li J, Sun S, Canning C, et al. (2010) Antioxidant rich grape pomace extract suppresses postprandial hyperglycemia in diabetic mice by specifically inhibiting alpha-glucosidase. Nutr Metab (Lond) 7: 71.
[38]  Yang WZ, Li YL, McAllister TA, McKinnon JJ, Beauchemin KA (2012) Wheat distillers grains in feedlot cattle diets: feeding behavior, growth performance, carcass characteristics, and blood metabolites. J Anim Sci 90: 1301–1310.
[39]  Sami AS, Augustini C, Schwarz FJ (2004) Effect of feeding intensity and time on feed on intramuscular fatty acid composition of Simmental bulls. Journal of Animal Physiology and Animal Nutrition 88: 179–187.
[40]  Price BD, Garmyn AJ, Derington HM, Galyean ML, Jackson SP, et al. (2011) Effects of high-oil corn on feedlot performance, carcass characteristics, fatty acid profiles, beef palatability, and retail case life traits of beef top loin steaks. Journal of Animal Science 89: 809–816.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413