全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Supply Chain Coordination under Stock- and Price-Dependent Selling Rates under Declining Market

DOI: 10.1155/2012/375128

Full-Text   Cite this paper   Add to My Lib

Abstract:

We explore coordination issues of a two-echelon supply chain, consisting of a distributor and a retailer. The effect of revenue-sharing contract mechanism is examined under stock-time-price-sensitive demand rate. First, we investigate relationships between distributor and retailer under noncooperative distributor-Stackelberg games. Then we establish analytically that revenue sharing contact is able to coordinate the system and leads to the win-win outcomes. Finally, numerical examples are presented to compare results between the different models. 1. Introduction In the last few decades, extensive researches have been performed in the area of supply chain coordination. Numerous studies have offered various contractual forms of alliance to enhance joint performance of supply chain partners. This includes buybacks [1–3], quantity discount [4–6], revenue sharing [7, 8], two part tariffs [9], quantity flexibility contracts [10], and target-level sales rebates [11], to coordinate the decisions of supply chain partners. In this paper, we mainly consider a specific type of supply chain contract, namely, the revenue-sharing contract, which is adopted to coordinate a decentralized supply chain. The revenue-sharing contract mechanism can be identified by two parameters, namely, the wholesale price and percentage of the revenue-shared between the supply chain entities [12]. The performance of revenue sharing contract has been examined on standard newsvendor problem, and it has been observed that this coordination mechanism perfectly coordinates the system. Warren and Peers [13] have reported that after the adoption of revenue-sharing contract Blockbuster’s market share of video rental has increased from 24% in 1997 to 40% in 2002. Cachon and Lariviere [7] have provided an analysis of these contracts in a more general setting and demonstrate that revenue-sharing contracts coordinate the supply chain and arbitrarily allocate its profit to the two parties. Gerchak et al. [8] study the revenue sharing contracts in a decentralized Stackelberg setting in which the video rental channel and the studio make independent decisions. Wang et al. [14] have studied effect of revenue-sharing contract in a supply chain with fuzzy demand. Qin and Yang [15] have discussed effect of revenue sharing contract when supplier offers price discount to the retailer. Yao et al. [16] investigated a revenue-sharing contract for coordinating a supply chain comprising one manufacturer and two competing retailers under classic newsvendor problem model framework. Lu et al. [17] have used revenue

References

[1]  A. A. Tsay, “Managing retail channel overstock: markdown money and return policies,” Journal of Retailing, vol. 77, no. 4, pp. 457–492, 2001.
[2]  C. H. Lee and B. D. Rhee, “Channel coordination using product returns for a supply chain with stochastic salvage capacity,” European Journal of Operational Research, vol. 177, no. 1, pp. 214–238, 2007.
[3]  T. Xiao, K. Shi, and D. Yang, “Coordination of a supply chain with consumer return under demand uncertainty,” International Journal of Production Economics, vol. 124, no. 1, pp. 171–180, 2010.
[4]  Z. K. Weng, “Channel coordination and quantity discount,” Management Science, vol. 41, pp. 1509–1522, 1995.
[5]  G. P. Cachon, “Supply chain coordination with contracts,” in Hand Books in Operations Research and Management Science: Supply Chain Management, S. Graves and T. Kok, Eds., pp. 229–339, Elsevier, Amsterdam, The Netherlands, 2003.
[6]  C. Hsieh, Y. Liu, and W. Wang, “Coordinating ordering and pricing decisions in a two-stage distribution system with price-sensitive demand through short-term discounting,” European Journal of Operational Research, vol. 207, no. 1, pp. 142–151, 2010.
[7]  G. P. Cachon and M. A. Lariviere, “Supply chain coordination with revenue-sharing contracts: strengths and limitations,” Management Science, vol. 51, no. 1, pp. 30–44, 2005.
[8]  Y. Gerchak, R. K. Cho, and S. Ray, “Coordination of quantity and shelf-retention timing in the video movie rental industry,” IIE Transactions, vol. 38, no. 7, pp. 525–536, 2006.
[9]  M. A. Lariviere, “Supply chain contracting and coordination with stochastic demand,” in Quantitative Models for Supply Chain Management, S. Tayur, R. Ganeshan, and M. Magazine, Eds., pp. 234–268, Kluwers, Norwell, Mass, USA, 1999.
[10]  A. A. Tsay, “The quantity flexibility contract and supplier-customer incentives,” Management Science, vol. 45, no. 10, pp. 1339–1358, 1999.
[11]  T. A. Taylor, “Supply chain coordination under channel rebates with sales effort effects,” Management Science, vol. 48, no. 8, pp. 992–1007, 2002.
[12]  C. Koulamas, “A newsvendor problem with revenue sharing and channel coordination,” Decision Sciences, vol. 37, no. 1, pp. 91–100, 2006.
[13]  A. Warren and M. Peers, “Video retailers have day in court-plaintiffs say supply deals between Blockbuster Inc. and studios violates laws,” Wall Street Journal, vol. 13, p. B10, 2002.
[14]  J. Wang, R. Zhao, and W. Tang, “Supply chain coordination by revenue-sharing contract with fuzzy demand,” Journal of Intelligent and Fuzzy Systems, vol. 19, no. 6, pp. 409–420, 2008.
[15]  Z. Qin and J. Yang, “Analysis of a revenue-sharing contract in supply chain management,” International Journal of Logistics Research and Applications, vol. 11, no. 1, pp. 17–29, 2008.
[16]  Z. Yao, S. C. H. Leung, and K. K. Lai, “Manufacturer's revenue-sharing contract and retail competition,” European Journal of Operational Research, vol. 186, no. 2, pp. 637–651, 2008.
[17]  Y. Lu, J. Lin, and B. Wang, “Mobile service supply chain coordination with revenue sharing contracts,” International Journal of Logistics Systems and Management, vol. 6, no. 3, pp. 267–278, 2010.
[18]  R. I. Levin, C. P. McLaughlin, R. P. Lamone, and J. F. Kottas, Productions/Operations Management Contemporary Policy for Managing Operating Systems, McGraw-Hill, New York, State, USA, 1972.
[19]  T. Urban, “Inventory model with an inventory-level-dependent demand rate and relaxed terminal conditions,” Journal of the Operational Research Society, vol. 43, no. 7, pp. 721–724, 1992.
[20]  C. T. Chang, S. K. Goyal, and J. T. Teng, “On An EOQ model for perishable items under stock-dependent selling rate and time-dependent partial backlogging by Dye and Ouyang,” European Journal of Operational Research, vol. 174, no. 2, pp. 923–929, 2006.
[21]  E. A. Silver and H. C. Meal, “A simple modification of the EOQ for the case of a varying demand rate,” Productions and Inventory Management, vol. 10, no. 4, pp. 52–56, 1979.
[22]  E. A. Silver and R. Peterson, Decision System for Inventory Management and Production Planning, Willy, New York, NY, USA, 2nd edition, 1985.
[23]  R. C. Baker and T. L. Urban, “A deterministic inventory system with an inventory level dependent demand rate,” Journal of the Operational Research Society, vol. 39, pp. 823–831, 1998.
[24]  T. K. Datta and A. K. Pal, “Note on an inventory model with inventory-level-dependent demand rate,” Journal of the Operational Research Society, vol. 41, no. 10, pp. 971–975, 1990.
[25]  G. Padmanabhan and P. Vrat, “EOQ models for perishable items under stock dependent selling rate,” European Journal of Operational Research, vol. 86, no. 2, pp. 281–292, 1995.
[26]  S. Panda, S. Saha, and M. Basu, “A note on EPQ model for seasonal perishable products with stock dependent demand,” Asia-Pacific Journal of Operational Research, vol. 25, no. 3, pp. 301–315, 2008.
[27]  S. Panda, S. Saha, and M. Basu, “An EOQ model for perishable products with discounted selling price and stock dependent demand,” Central European Journal of Operations Research (CEJOR), vol. 17, no. 1, pp. 31–53, 2009.
[28]  C. T. Chang, J. T. Teng, and S. K. Goyal, “Optimal replenishment policies for non-instantaneous deteriorating items with stock-dependent demand,” International Journal of Production Economics, vol. 123, no. 1, pp. 62–68, 2010.
[29]  S. S. Sana and K. S. Chaudhuri, “An inventory model for stock with advertising sensitive demand,” IMA Journal of Management Mathematics, vol. 19, no. 1, pp. 51–62, 2008.
[30]  T. L. Urban, “Inventory models with inventory-level-dependent demand: a comprehensive review and unifying theory,” European Journal of Operational Research, vol. 162, no. 3, pp. 792–804, 2005.
[31]  S. S. Sana and K. S. Chaudhuri, “A deterministic EOQ model with delays in payments and price-discount offers,” European Journal of Operational Research, vol. 184, no. 2, pp. 509–533, 2008.
[32]  M. Das Roy, S. S. Sana, and K. S. Chaudhuri, “An economic order quantity model of imperfect quality items with partial backlogging,” International Journal of Systems Science, vol. 42, no. 8, pp. 1409–1419, 2011.
[33]  S. S. Sana, “Price sensitive demand with random sales price—a newsboy problem,” International Journal of Systems Science. In press.
[34]  S. Sankar Sana, “Price-sensitive demand for perishable items—an EOQ model,” Applied Mathematics and Computation, vol. 217, no. 13, pp. 6248–6259, 2011.
[35]  P.-S. You and Y.-C. Hsieh, “An EOQ model with stock and price sensitive demand,” Mathematical and Computer Modelling, vol. 45, no. 7-8, pp. 933–942, 2007.
[36]  J. Mo, F. Mi, F. Zhou, and H. Pan, “A note on an EOQ model with stock and price sensitive demand,” Mathematical and Computer Modelling, vol. 49, no. 9-10, pp. 2029–2036, 2009.
[37]  G. Parthasarathi, S. P. Sarmah, and M. Jenamani, “Supply chain coordination under retail competition using stock dependent price-setting newsvendor framework,” International Journal of Operational Research, pp. 1–21, 2010.
[38]  M. Valliathal and R. Uthayakumar, “Designing a new computational approach of partial backlogging on the economic production quantity model for deteriorating items with non-linear holding cost under inflationary conditions,” Optimization Letters, pp. 1–16, 2010.
[39]  S. S. Sana, “Optimal selling price and lotsize with time varying deterioration and partial backlogging,” Applied Mathematics and Computation, vol. 217, no. 1, pp. 185–194, 2010.
[40]  Y. Wang and Y. Gerchak, “Supply chain coordination when demand is shelf-space dependent,” Manufacturing and Service Operations Management, vol. 3, no. 1, pp. 82–87, 2001.
[41]  Y. W. Zhou, J. Min, and S. K. Goyal, “Supply-chain coordination under an inventory-level-dependent demand rate,” International Journal of Production Economics, vol. 113, no. 2, pp. 518–527, 2008.
[42]  S. S. Sana, “A production-inventory model of imperfect quality products in a three-layer supply chain,” Decision Support Systems, vol. 50, no. 2, pp. 539–547, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133