全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Room Temperature Direct Band Gap Emission from Ge p-i-n Heterojunction Photodiodes

DOI: 10.1155/2012/916275

Full-Text   Cite this paper   Add to My Lib

Abstract:

Room temperature direct band gap emission is observed for Si-substrate-based Ge p-i-n heterojunction photodiode structures operated under forward bias. Comparisons of electroluminescence with photoluminescence spectra allow separating emission from intrinsic Ge (0.8?eV) and highly doped Ge (0.73?eV). Electroluminescence stems from carrier injection into the intrinsic layer, whereas photoluminescence originates from the highly n-doped top layer because the exciting visible laser wavelength is strongly absorbed in Ge. High doping levels led to an apparent band gap narrowing from carrier-impurity interaction. The emission shifts to higher wavelengths with increasing current level which is explained by device heating. The heterostructure layer sequence and the light emitting device are similar to earlier presented photodetectors. This is an important aspect for monolithic integration of silicon microelectronics and silicon photonics. 1. Introduction Progress in Si-based photonics from Ge/Si heterostructures attracts worldwide attention [1]. Photonics and optoelectronics play an essential role in many areas of applications [2] as in telecommunication, information technology, and optical interconnect systems. Integration of Si-based microelectronics and optoelectronic devices would be greatly enhanced if similar facilities and technologies can be used. One approach is the development of optoelectronic components based on Si compatible materials. Waveguiding in silicon-on-insulator (SOI) structures, high speed detecting by Ge/Si heterostructure devices [3, 4], and signal modulation by interferometric principles were demonstrated in the last decades. In the last years, small area absorption modulators based on electric field modification of material properties (quantum-confined Stark effect, Franz-Keldysh effect) were developed [5]. However, the realization of light emitters with a Si base is still challenging. Due to the fact that it is an indirect semiconductor with a relatively large direct band gap (3.2?eV), Si itself is not suited for the development of light emitters. An alternative and compatible material is Ge. Ge is also an indirect semiconductor but the direct band gap of 0.8?eV is only slightly larger than the indirect one ( ?meV). Furthermore, 0.8?eV corresponds to the required communication wavelength of 1,550?nm [6]. The small energy difference between the direct and the indirect band gap should open the possibility for light emitting devices with reasonable quantum efficiencies. The direct gap photoluminescence of Ge at a temperature of 2?K was

References

[1]  B. Jalali and S. Fathpour, “Silicon photonics,” Journal of Lightwave Technology, vol. 24, no. 12, pp. 4600–4615, 2006.
[2]  R. Soref, “Silicon photonics: a review of recent literature,” Silicon, vol. 2, no. 1, pp. 1–6, 2010.
[3]  R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. Paniccia, “31?GHz Ge n-i-p waveguide photodetectors on Silicon on Insulator substrate,” in Proceedings of the 4th IEEE/LEOS International Conference on Group IV Photonics, Tokyo, Japan, 2007.
[4]  S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, “Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49?GHz,” IEEE Photonics Technology Letters, vol. 21, no. 13, pp. 920–922, 2009.
[5]  Y. H. Kuo, Y. K. Lee, Y. Ge et al., “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature, vol. 437, no. 7063, pp. 1334–1336, 2005.
[6]  C. Claeys and E. Simoen, Germanium Based Technologies: From Materials to Devices, Elsevier, Amsterdam, The Netherlands, 2007.
[7]  W. Klingenstein and H. Schweizer, “Direct gap recombination in germanium at high excitation level and low temperature,” Solid State Electronics, vol. 21, no. 11-12, pp. 1371–1374, 1978.
[8]  J. Liu, R. Camacho-Aguilera, J. T. Bessette et al., “Ge-on-Si optoelectronics,” Thin Solid Films, vol. 520, no. 8, pp. 3354–3360, 2012.
[9]  X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Optics Letters, vol. 34, no. 8, pp. 1198–1200, 2009.
[10]  S. L. Cheng, J. Lu, G. Shambat et al., “Room temperature 1.6?μm electroluminescence from Ge light emitting diode on Si substrate,” Optics Express, vol. 17, no. 12, pp. 10019–10024, 2009.
[11]  J. Liu, X. Sun, L. C. Kimerling, and J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Optics Letters, vol. 34, no. 11, pp. 1738–1740, 2009.
[12]  J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Optics Letters, vol. 35, no. 5, pp. 679–681, 2010.
[13]  M. Oehme, J. Werner, M. Kaschel, O. Kirfel, and E. Kasper, “Germanium waveguide photodetectors integrated on silicon with MBE,” Thin Solid Films, vol. 517, no. 1, pp. 137–139, 2008.
[14]  M. Oehme, M. Kaschel, J. Werner et al., “Germanium on silicon photodetectors with broad spectral range,” Journal of the Electrochemical Society, vol. 157, no. 2, pp. H144–H148, 2010.
[15]  M. Oehme, J. Werner, and E. Kasper, “Molecular beam epitaxy of highly antimony doped germanium on silicon,” Journal of Crystal Growth, vol. 310, no. 21, pp. 4531–4534, 2008.
[16]  J. Wang and S. Lee, “Ge-photodetectors for Si-based optoelectronic integration,” Sensors, vol. 11, no. 1, pp. 696–718, 2011.
[17]  M. Oehme, J. Werner, E. Kasper, S. Klinger, and M. Berroth, “Photocurrent analysis of a fast Ge p-i-n detector on Si,” Applied Physics Letters, vol. 91, no. 5, Article ID 051108, 3 pages, 2007.
[18]  E. Kasper and M. Oehme, “High speed germanium detectors on Si,” Physica Status Solidi (C), vol. 5, no. 9, pp. 3144–3149, 2008.
[19]  E. Kasper, M. Oehme, T. Aguirov, J. Werner, M. Kittler, and J. Schulze, “Room temperature direct band gap emission from Ge p-i-n heterojunction photodiodes,” in Proceedings of the 7th IEEE/LEOS International Conference on Group IV Photonics, Beijing, China, 2010.
[20]  D. B. M. Klaassen, J. W. Slotboom, and H. C. de Graaff, “Unified apparent bandgap narrowing in n- and p-type silicon,” Solid-State Electronics, vol. 35, no. 2, pp. 125–129, 1992.
[21]  M. Schmid, M. Oehme, M. Kaschel, J. Werner, E. Kasper, and J. Schulze, “Franz-Keldysh effect in Germanium on Silicon p-i-n photodetectors,” in Proceedings of the 7th IEEE/LEOS International Conference on Group IV Photonics, pp. 329–331, Beijing, China, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413