全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Extension of the Multipole Approach to Random Metamaterials

DOI: 10.1155/2012/161402

Full-Text   Cite this paper   Add to My Lib

Abstract:

Influence of the short-range lateral disorder in the meta-atoms positioning on the effective parameters of the metamaterials is investigated theoretically using the multipole approach. Random variation of the near field quasi-static interaction between metaatoms in form of double wires is shown to be the reason for the effective permittivity and permeability changes. The obtained analytical results are compared with the known experimental ones. 1. Introduction Metamaterials are artificial media that allow tailoring the macroscopic properties of the light propagation by a careful choice of a design for the microscopic unit cell (called the meta-atom). By controlling the geometrical shape and the material dispersion of the meta-atom, novel effects such as negative refraction [1–3], optical cloaking [4–9], as well as series of optical analogues to phenomena known from different disciplines in physics could be observed [10–14]. Despite the possibility to rely on rigorous computations for describing the light propagation on the microscopic level, an enduring problem in metamaterial research is the question on how the effective material tensor looks like for a certain metamaterial. A simple and versatile analytical model describing propagation of electromagnetic waves in metamaterials has been recently developed following classical approach of Maxwell equation averaging procedure [15]. This transition from the microscopic to macroscopic system of Maxwell equations takes into account all peculiarities of carriers dynamics under the action of the resulted electromagnetic field through the introduction of multipole moments which are supposed to be represented as the functions of the macroscopic electric and magnetic fields [16]. One of the great advantages of this model is the ability to evaluate straightforwardly influence of the charge dynamics of the meta-atoms on the effective properties of the metamaterials. In fact, the multipole moments are calculated through the averaged charge dynamics in the meta-atoms. Any factors influencing the charge dynamics (e.g., interaction between the meta-atoms, extra coupling of the meta-atoms with the other objects, etc.) cause the changes in the multipole expressions, which in turn change the effective parameters. It is important for the analysis presented here that the interaction between the meta-atoms and hence its influence on the effective permittivity and permeability can be straightforwardly taken into account [17]. The interaction between the small particles, both dielectric and metallic, and propagation of an

References

[1]  U. K. Chettiar, A. V. Kildishev, H. K. Yuan et al., “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Optics Letters, vol. 32, no. 12, pp. 1671–1673, 2007.
[2]  G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Optics Letters, vol. 32, no. 1, pp. 53–55, 2007.
[3]  J. Valentine, S. Zhang, T. Zentgraf et al., “Three-dimensional optical metamaterial with a negative refractive index,” Nature, vol. 455, no. 7211, pp. 376–379, 2008.
[4]  J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Materials, vol. 8, no. 7, pp. 568–571, 2009.
[5]  A. Alu and N. Engheta, “Cloaking a sensor,” Physical Review Letters, vol. 102, 2009.
[6]  Y. Lai, J. Ng, H. Chen et al., “Illusion optics: the optical transformation of an object into another object,” Physical Review Letters, vol. 102, 2009.
[7]  M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Physical Review Letters, vol. 103, 2009.
[8]  D. Schurig, J. J. Mock, B. J. Justice et al., “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977–980, 2006.
[9]  U. Leonhardt, “Optical conformal mapping,” Science, vol. 312, no. 5781, pp. 1777–1780, 2006.
[10]  E. E. Narimanov and A. V. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Applied Physics Letters, vol. 95, Article ID 041106, 2009.
[11]  S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar , “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Applied Physics Letters, vol. 95, Article ID 041902, 2009.
[12]  D. ?. G?uney and D. A. Meyer, “Negative refraction gives rise to the Klein paradox,” Physical Review A, vol. 79, p. 1, 2009.
[13]  N. Papasimakis, V. Fedotov, and N. Zheludev, “Metamaterial analog of electromagnetically induced transparency,” Physical Review Letters, vol. 101, Article ID 253903, 2008.
[14]  N. Liu, L. Langguth, T. Weiss et al., “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Materials, vol. 8, no. 9, pp. 758–762, 2009.
[15]  P. Mazur and B. R. A. Nijboer, “On the statistical mechanics of matter in an electromagnetic field—I. Derivation of the maxwell equations from electron theory,” Physica, vol. 19, no. 1–12, pp. 971–986, 1953.
[16]  A. Chipouline, J. Petschulat, A. Tuennermann et al., “Multipole approach in electrodynamics of metamaterials,” Applied Physics A, vol. 103, no. 3, pp. 899–904, 2011.
[17]  A. Chipouline, S. Sugavanam, J. Petschulat, and T. Pertsch, “Metamaterials with interacting Metaatoms,” http://arxiv.org/abs/1205.6839.
[18]  C. S. Deng, H. Xu, and L. Deych, “Optical transport and statistics of radiative losses in disordered chains of microspheres,” Physical Review A, vol. 82, no. 4, Article ID 041803, 2010.
[19]  W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Physical Review B, vol. 70, no. 12, Article ID 125429, 8 pages, 2004.
[20]  M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Optics Letters, vol. 23, no. 17, pp. 1331–1333, 1998.
[21]  N. A. Gippius, T. Weiss, S. G. Tikhodeev, and H. Giessen, “Resonant mode coupling of optical resonances in stacked nanostructures,” Optics Express, vol. 18, no. 7, pp. 7569–7574, 2010.
[22]  N. Feth, M. K?nig, M. Husnik et al., “Electromagnetic interaction of split-ring resonators: the role of separation and relative orientation,” Optics Express, vol. 18, no. 7, pp. 6545–6554, 2010.
[23]  A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Physical Review B, vol. 74, no. 20, Article ID 205436, 2006.
[24]  J. M. Rico-García, J. M. López-Alonso, and A. Aradian, “Toy model to describe the effect of positional blocklike disorder in metamaterials composites,” Journal of the Optical Society of America B, vol. 29, p. 53, 2012.
[25]  S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Physical Review B, vol. 67, no. 20, Article ID 205402, pp. 2054021–2054025, 2003.
[26]  A. Alù and N. Engheta, “Effect of small random disorders and imperfections on the performance of arrays of plasmonic nanoparticles,” New Journal of Physics, vol. 12, Article ID 013015, 2010.
[27]  J. B. Pendry, “Light finds a way through maze,” Physics, vol. 1, p. 20, 2008.
[28]  P. W. Anderson, “Absence of diffusion in certain random lattices,” Physical Review, vol. 109, no. 5, pp. 1492–1505, 1958.
[29]  J. B. Pendry, “Quasi-extended electron states in strongly disordered systems,” Journal of Physics C, vol. 20, no. 5, p. 733, 1987.
[30]  A. V. Tartakovskii, M. V. Fistul, M. E. Raikh, and I. M. Ruzin, “Hopping conductivity of metal-semiconductormetal contacts,” Soviet Physics, vol. 21, p. 370, 1987.
[31]  J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in anderson localized 1D systems,” Physical Review Letters, vol. 94, no. 11, Article ID 113903, 2005.
[32]  K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one-dimensional dissipative random systems,” Physical Review Letters, vol. 97, no. 24, Article ID 243904, 2006.
[33]  F. Rüting, “Plasmons in disordered nanoparticle chains: localization and transport,” Physical Review B, vol. 83, no. 11, Article ID 115447, 2011.
[34]  D. Mogilevtsev, F. A. Pinheiro, R. R. Dos Santos, S. B. Cavalcanti, and L. E. Oliveira, “Suppression of Anderson localization of light and Brewster anomalies in disordered superlattices containing a dispersive metamaterial,” Physical Review B, vol. 82, no. 8, Article ID 081105, 2010.
[35]  W. Tan, Y. Sun, Z. G. Wang, H. Chen, and H. Q. Lin, “Transparency induced by coupled resonances in disordered metamaterials,” Optics Express, vol. 17, no. 26, pp. 24371–24376, 2009.
[36]  L. Jylh?, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” Journal of Applied Physics, vol. 99, no. 4, Article ID 043102, 2006.
[37]  M. V. Gorkunov, S. A. Gredeskul, I. V. Shadrivov, and Y. S. Kivshar, “Effect of microscopic disorder on magnetic properties of metamaterials,” Physical Review E, vol. 73, no. 5, Article ID 056605, 2006.
[38]  X. Zhou, X. P. Zhao, and Y. Liu, “Disorder effects of left-handed metamaterials with unitary dendritic structure cell,” Optics Express, vol. 16, no. 11, pp. 7674–7679, 2008.
[39]  N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Physical Review B, vol. 80, no. 4, Article ID 041102, 2009.
[40]  A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials, vol. 2, no. 1, pp. 1–17, 2008.
[41]  J. P. Wright, O. Worsfold, C. Whitehouse, and M. Himmelhaus, “Ultraflat ternary nanopatterns fabricated using colloidal lithography,” Advanced Materials, vol. 18, no. 4, pp. 421–426, 2006.
[42]  P. Hanarp, D. Sutherland, J. Gold, and B. Kasemo, “Nanostructured model biomaterial surfaces prepared by colloidal lithography,” Nanostructured Materials, vol. 12, no. 1, pp. 429–432, 1999.
[43]  R. Glass, M. M?ller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology, vol. 14, no. 10, pp. 1153–1160, 2003.
[44]  C. Helgert, C. Rockstuhl, C. Etrich et al., “Effective properties of amorphous metamaterials,” Physical Review B, vol. 79, Article ID 233107, 2009.
[45]  J. Petschulat, C. Menzel, A. Chipouline et al., “Multipole approach to metamaterials,” Physical Review A, vol. 78, no. 4, Article ID 043811, 2008.
[46]  D. A. Pawlak, S. Turczynski, M. Gajc et al., “How far are we from making metamaterials by self-organization? the microstructure of highly anisotropic particles with an SRR-like geometry,” Advanced Functional Materials, vol. 20, no. 7, pp. 1116–1124, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413