全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Performance of Active Coated Nanoparticles Based on Quantum-Dot Gain Media

DOI: 10.1155/2012/368786

Full-Text   Cite this paper   Add to My Lib

Abstract:

Quantum-dots (QDs) provide an exciting option for the gain media incorporated in active coated nanoparticles (CNPs) because they possess large gain coefficients resulting from their extreme confinement effects. The optical properties of core/shell QDs can be tuned by changing the relative size of the core/shell, that is, by effectively changing its band gap structure. Similarly, the resonance of a CNP can be adjusted by changing the relative sizes of its layers. It is demonstrated here that by optimally locating the QDs inside a resonant CNP structure it is possible to greatly enhance the intrinsic amplifying behavior of the combined QD-CNP system. 1. Introduction The active coated nanoparticle (CNP) designs studied previously considered active silica cores coated with either Ag or Au shells (depending on the wavelength region of interest) [1–3] or the corresponding “inside-out” (IO) designs, that is, metallic cores covered with active silica coatings [2, 4]. In general, these designs used a simple gain model that did not include the dispersion behavior typical of a physical, active medium. These nanoamplifier designs were predicted to require a gain value of 104–105?cm?1. This is achievable with quantum dots (QDs); and, consequently, they have been a preferred choice for some discussions on the physical realizations of these nanoamplifiers [3]. QDs offer an alternative, more robust option to dye-based gain media, which are susceptible to bleaching. Nonetheless, the active IO-CNP has been experimentally verified with a dye impregnated silica coating [4]. Moreover, it and related studies [5, 6] suggest that the strong localized field and large cross-section effects associated with these plasmonic nanostructures reduce the model-based large gain values to more practical ones. We demonstrate here that QDs, which can be obtained commercially and could be integrated with the CNPs, do in fact represent an exciting practical option for a variety of active CNP designs. Moreover, it is established that the number of QDs needed for a successful active CNP design is considerably smaller than anticipated. 2. Quantum-Dot Gain Model The effective permittivity of a core-shell QD has been modeled by Holmstr?m et al. and is applicable for core-shell QDs in the strong confinement regime [7]. This model is motivated by Maxwell-Garnett effective medium theory and is given by the following: where is the volume of the entire core-shell structure; is the oscillator strength; and are, respectively, the conduction and valence band carrier distribution functions; is a dampening

References

[1]  J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Optics Express, vol. 15, no. 5, pp. 2622–2653, 2007.
[2]  M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” Journal of Optics A, vol. 12, no. 2, Article ID 024004, 2010.
[3]  S. Arslanagi? and R. W. Ziolkowski, “Active coated nano-particle excited by an arbitrarily located electric Hertzian dipole-resonance and transparency effects,” Journal of Optics A, vol. 12, no. 2, Article ID 024014, 2010.
[4]  M. A. Noginov, G. Zhu, A. M. Belgrave et al., “Demonstration of a spaser-based nanolaser,” Nature, vol. 460, no. 7259, pp. 1110–1112, 2009.
[5]  Y. Sivan, S. Xiao, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Frequency-domain simulations of a negativeindex material with embedded gain,” Optics Express, vol. 17, no. 26, pp. 24060–24074, 2009.
[6]  S. D. Campbell and R. W. Ziolkowski, “Impact of strong localization of the incident power density on the nano-amplifier characteristics of active coated nano-particles,” Optics Communications, vol. 285, no. 16, pp. 3341–3352, 2012.
[7]  P. Holmstr?m, L. Thy?n, and A. Bratkovsky, “Dielectric function of quantum dots in the strong confinement regime,” Journal of Applied Physics, vol. 107, no. 6, Article ID 064307, 2010.
[8]  http://www.sigmaaldrich.com/materials-science/nanomaterials/lumidots.html.
[9]  B. Jensen and A. Torabi, “Refractive index of hexagonal II-VI compounds CdSe, CdS, and CdSexS1-x,” Journal of the Optical Society of America B, vol. 3, pp. 857–863, 1986.
[10]  http://www.dow.com/assets/attachments/business/gt/infrared_materials/cleartran/tds/cleartran.pdf.
[11]  A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” Journal of Applied Physics, vol. 22, no. 10, pp. 1242–1246, 1951.
[12]  P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Physical Review B, vol. 6, no. 12, pp. 4370–4379, 1972.
[13]  M. Klopfer and R. K. Jain, “Plasmonic quantum dots for nonlinear optical applications,” Optical Materials Express, vol. 1, no. 7, pp. 1353–1366, 2011.
[14]  W. C. H. Choy, X. W. Chen, S. L. He, and P. C. Chui, “The Purcell effect of silver nanoshell on the fluorescence of nanoparticles,” in Proceedings of the Asia Optical Fiber Communication and Optoelectronic Exposition and Conference (AOE '07), pp. 81–83, October 2007.
[15]  A. Neogi, H. Morko?, T. Kuroda, and A. Tackeuchi, “Coupling of spontaneous emission from GaN-AlN quantum dots into silver surface plasmons,” Optics Letters, vol. 30, no. 1, pp. 93–95, 2005.
[16]  J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Letters, vol. 5, no. 8, pp. 1557–1561, 2005.
[17]  F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Letters, vol. 7, no. 2, pp. 496–501, 2007.
[18]  Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nature Nanotechnology, vol. 4, no. 9, pp. 571–576, 2009.
[19]  M. A. Noginov, H. Li, Y. A. Barnakov et al., “Controlling spontaneous emission with metamaterials,” Optics Letters, vol. 35, no. 11, pp. 1863–1865, 2010.
[20]  V. N. Pustovit and T. V. Shahbazyan, “Fluorescence quenching near small metal nanoparticles,” Journal of Chemical Physics, vol. 136, no. 20, Article ID 204701, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413