全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Asymmetric Proximal Decomposition Method for Convex Programming with Linearly Coupling Constraints

DOI: 10.1155/2012/281396

Full-Text   Cite this paper   Add to My Lib

Abstract:

The problems studied are the separable variational inequalities with linearly coupling constraints. Some existing decomposition methods are very problem specific, and the computation load is quite costly. Combining the ideas of proximal point algorithm (PPA) and augmented Lagrangian method (ALM), we propose an asymmetric proximal decomposition method (AsPDM) to solve a wide variety separable problems. By adding an auxiliary quadratic term to the general Lagrangian function, our method can take advantage of the separable feature. We also present an inexact version of AsPDM to reduce the computation load of each iteration. In the computation process, the inexact version only uses the function values. Moreover, the inexact criterion and the step size can be implemented in parallel. The convergence of the proposed method is proved, and numerical experiments are employed to show the advantage of AsPDM. 1. Introduction The original model considered here is the convex minimization problem with linearly coupling constraints: where , are given matrixes, are given -vector, and are the th block convex differentiable functions for each . This special problem is called convex separable problem. Problems possessing such separable structure arise in discrete-time deterministic optimal control and in the scheduling of hydroelectric power generation [1]. Note that are differentiable, setting ; by the well-known minimum principle in nonlinear programming, it is easy to get an equivalent form of problem (1.1): find such that where Problems of this type are called separable variational inequalities (VIs). We will utilize this equivalent formulation and provide method for solution of separable VI. One of the best-known algorithms for solving convex programming or equivalent VI is the proximal point algorithm (PPA) first proposed by Martinet (see [2]) and had been studied well by Rockafellar [3, 4]. PPA and its dual version, the method of multipliers, draw on a large volume of prior work by various authors [5–9]. However, classical PPA and most of its subsequence papers cannot take advantage of the separability of the original problem, and this makes them inefficient in solving separable structure problems. One major direction of PPA’s study is to develop decomposition methods for separable convex programming and VI. The motivations for decomposition techniques are splitting the problem into isolate smaller or easier subproblems and parallelizing computations on specific parallel computing device. Decomposition-type methods [10–14] for large-scale problems have been widely

References

[1]  R. T. Rockafellar and R. J.-B. Wets, “Generalized linear-quadratic problems of deterministic and stochastic optimal control in discrete time,” SIAM Journal on Control and Optimization, vol. 28, no. 4, pp. 810–822, 1990.
[2]  B. Martinet, “Régularisation d'inéquations variationnelles par approximations successives,” Revue Francaise d'Informatique et de Recherche Opérationelle, vol. 4, pp. 154–158, 1970.
[3]  R. T. Rockafellar, “Monotone operators and the proximal point algorithm,” SIAM Journal on Control and Optimization, vol. 14, no. 5, pp. 877–898, 1976.
[4]  R. T. Rockafellar, “Augmented Lagrangians and applications of the proximal point algorithm in convex programming,” Mathematics of Operations Research, vol. 1, no. 2, pp. 97–116, 1976.
[5]  A. Auslender, M. Teboulle, and S. Ben-Tiba, “A logarithmic-quadratic proximal method for variational inequalities,” Computational Optimization and Applications, vol. 12, no. 1-3, pp. 31–40, 1999.
[6]  Y. Censor and S. A. Zenios, “Proximal minimization algorithm with D-functions,” Journal of Optimization Theory and Applications, vol. 73, no. 3, pp. 451–464, 1992.
[7]  B. He, X. Yuan, and J. J. Z. Zhang, “Comparison of two kinds of prediction-correction methods for monotone variational inequalities,” Computational Optimization and Applications, vol. 27, no. 3, pp. 247–267, 2004.
[8]  A. Nemirovsky, Prox-method with rate of convergence 0(1/k) for smooth variational inequalities and saddle point problem, Draft of 30/10/2003.
[9]  M. Teboulle, “Convergence of proximal-like algorithms,” SIAM Journal on Optimization, vol. 7, no. 4, pp. 1069–1083, 1997.
[10]  D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation, Numerical Methods, Prentice Hall, Englewood Cliffs, NJ, USA, 1989.
[11]  G. Chen and M. Teboulle, “A proximal-based decomposition method for convex minimization problems,” Mathematical Programming, vol. 64, no. 1, Ser. A, pp. 81–101, 1994.
[12]  B. He, L.-Z. Liao, and S. Wang, “Self-adaptive operator splitting methods for monotone variational inequalities,” Numerische Mathematik, vol. 94, no. 4, pp. 715–737, 2003.
[13]  P. Mahey, S. Oualibouch, and D. T. Pham, “Proximal decomposition on the graph of a maximal monotone operator,” SIAM Journal on Optimization, vol. 5, no. 2, pp. 454–466, 1995.
[14]  P. Tseng, “Applications of a splitting algorithm to decomposition in convex programming and variational inequalities,” SIAM Journal on Control and Optimization, vol. 29, no. 1, pp. 119–138, 1991.
[15]  R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, vol. 9 of SIAM Studies in Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1989.
[16]  B.-S. He, H. Yang, and C.-S. Zhang, “A modified augmented Lagrangian method for a class of monotone variational inequalities,” European Journal of Operational Research, vol. 159, no. 1, pp. 35–51, 2004.
[17]  M. Fukushima, “Application of the alternating direction method of multipliers to separable convex programming problems,” Computational Optimization and Applications, vol. 1, no. 1, pp. 93–111, 1992.
[18]  J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Research, Springer, New York, NY, USA, 1999.
[19]  A. Hamdi and P. Mahey, “Separable diagonalized multiplier method for decomposing nonlinear programs,” Computational & Applied Mathematics, vol. 19, no. 1, p. 1–29, 125, 2000.
[20]  A. Hamdi, P. Mahey, and J. P. Dussault, “A new decomposition method in nonconvex programming via a separable augmented Lagrangian,” in Recent advances in Optimization, vol. 452 of Lecture Notes in Economics and Mathematical Systems, pp. 90–104, Springer, Berlin, Germany, 1997.
[21]  P. Tseng, “Alternating projection-proximal methods for convex programming and variational inequalities,” SIAM Journal on Optimization, vol. 7, no. 4, pp. 951–965, 1997.
[22]  B. S. He, X. L. Fu, and Z. K. Jiang, “Proximal-point algorithm using a linear proximal term,” Journal of Optimization Theory and Applications, vol. 141, no. 2, pp. 299–319, 2009.
[23]  E. H. Zarantonello, “Projections on convex sets in Hilbert space and spectral theory,” in Contributions to Nonlinear Functional Analysis, E. H. Zarantonello, Ed., Academic Press, New York, NY, USA, 1971.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413