全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Performance Evaluation of Stochastic Multi-Echelon Inventory Systems: A Survey

DOI: 10.1155/2012/126254

Full-Text   Cite this paper   Add to My Lib

Abstract:

Globalization, product proliferation, and fast product innovation have significantly increased the complexities of supply chains in many industries. One of the most important advancements of supply chain management in recent years is the development of models and methodologies for controlling inventory in general supply networks under uncertainty and their widefspread applications to industry. These developments are based on three generic methods: the queueing-inventory method, the lead-time demand method and the flow-unit method. In this paper, we compare and contrast these methods by discussing their strengths and weaknesses, their differences and connections, and showing how to apply them systematically to characterize and evaluate various supply networks with different supply processes, inventory policies, and demand processes. Our objective is to forge links among research strands on different methods and various network topologies so as to develop unified methodologies. 1. Introduction Many real-world supply chains, such as those found in automotive, electronics, and consumer packaged goods industries, consist of large-scale assembly and distribution operations with geographically dispersed facilities. Clearly, many of these supply chains support the production and distribution of multiple end-products which are assembled from hundreds or thousands of subsystems and components with widely varying lead times and costs. One challenge in all these supply chains is the efficient management of inventory in a complex network of facilities and products with stochastic demand, random supply and high inventory and transportation costs. This requires one to specify the inventory policy for each product at each facility so as to minimize the system-wide inventory cost subject to customer service requirements. For many years, both practitioners and academicians have recognized the potential benefit of effective inventory control in such networks. In fact, the literature on multi-echelon inventory control can be dated back to the 1950s. However, it is only in the last few years that some of these benefits have been realized, see, for example, Lee and Billington [1], Graves and Willems [2], and Lin et al. [3]. Three reasons have contributed to this trend:(1) the availability of data, not only on network structure and bill of materials (BOMs), but also on demand processes, transportation lead times and manufacturing cycle times, and so forth;(2)industry that is searching for scientific methods for inventory management that help to cope with long lead times and

References

[1]  H. L. Lee and C. Billington, “Material management in decentralized supply chains,” Operations Research, vol. 41, no. 5, pp. 835–847, 1993.
[2]  S. C. Graves and S. P. Willems, “Optimizing strategic safety stock placement in supply chains,” Manufacturing and Service Operations Management, vol. 2, no. 1, pp. 68–83, 2000.
[3]  G. Lin, M. Ettl, S. Buckley et al., “Extended-enterprise supply-chain management at IBM personal systems group and other divisions,” Interfaces, vol. 30, no. 1, pp. 7–25, 2000.
[4]  S. Nahmias, Production and Operations Analysis, McGraw-Hill/Irwin, Boston, Mass, USA, 4th edition, 2000.
[5]  J. F. Shapiro, “Mathematical programming models and methods for production planningand scheduling,” in Handbooks in Operations Research and Management Science, vol. 4, North-Holland, Amsterdam, The Netherlands, 1993.
[6]  R. Kapuscinski and S. Tayur, “Optimal policies and simulation-based optimization for capacitated production inventory systems,” in Quantitative Models for Supply Chain Management, S. Tayur, R. Ganeshan, and M. J. Magazine, Eds., Kluwer Academic Publishers, Boston, Mass, USA, 1998.
[7]  C. R. Sox, P. L. Jackson, A. Bowman, and J. A. Muckstadt, “Review of the stochastic lot scheduling problem,” International Journal of Production Economics, vol. 62, no. 3, pp. 181–200, 1999.
[8]  A. Federgruen, “Centralized planning models for multi-echelon inventory systems underuncertainty,” in Handbooks in OR & MS, S. C. Graves, et al., Ed., vol. 4, North Holland, Amsterdam, The Netherlands, 1993.
[9]  P. Zipkin, Foundations of Inventory Management, McGraw Hill, Boston, Mass, USA, 2000.
[10]  E. L. Porteus, Foundations of Stochastic Inventory Theory, Stanford University Press, Stanford, Calif, USA, 2002.
[11]  S. C. Graves and S. P. Willems, “Supply chain design: safety stock placement and supplychain configuration,” in Handbooks in Operations Research and Management Science Vol. 11, Supply Chain Management: Design, Coordination and Operation, A. G. de Kok and S. C. Graves, Eds., North-Holland, Amsterdam, The Netherlands, 2003.
[12]  G. Hadley and T. M. Whitin, Analysis of Inventory Systems, Prentice-Hall, Englewood Cliffs, NJ, USA, 1963.
[13]  F. Chen, “On (R, NQ) policies in serial inventory systems,” in Quantitative Model for Supply Chain Management, S. Tayur, R. Ganeshan, and M. J. Magazine, Eds., Kluwer Academic Publishers, Boston, Mass, USA, 1998.
[14]  T. G. de Kok and J. C. Fransoo, “Planning supply chain operations: definition and comparisonof planning concepts,” in Handbooks in Operations Researchand Management Science, Vol. 11: Supply Chain Management, A. G. de Kok and S. C. Graves, Eds., Elsevier, Amsterdam, The Netherlands, 2003.
[15]  J. S. Song and P. Zipkin, “Supply chain operations: assemble-to-order systems,” in Handbooks in Operations Research and Management Science, Vol. 11: Supply Chain Management, A. G. de Kok and S. C. Graves, Eds., Elsevier, Amsterdam, The Netherlands, 2003.
[16]  S. Axsater, “Supply chain operations: serial and distribution inventory systems,” in Handbooks in Operations Research and Management Science, Vol. 11: Supply Chain Management: Design, Coordination and Operation, A. G. de Kok and S. C. Graves, Eds., North-Holland, Amsterdam, The Netherlands, 2003.
[17]  R. Kaplan, “A dynamic inventory model with stochastic lead times,” Management Science, vol. 16, pp. 491–507, 1970.
[18]  J. S. Song and P. H. Zipkin, “Inventory control with information about supply conditions,” Management Science, vol. 42, no. 10, pp. 1409–1419, 1996.
[19]  P. Zipkin, “Stochastic lead-times in continuous-time inventory models,” Naval Research Logistics Quarterly, vol. 33, pp. 763–774, 1986.
[20]  A. Svoronos and P. Zipkin, “Evaluation of one-for-one replenishment policies for multiechelon inventory systems,” Management Science, vol. 37, no. 1, pp. 68–83, 1991.
[21]  C. Sherbrooke, “METRIC: a multi-echelon technique for recoverable item control,” Operations Research, vol. 16, pp. 122–141, 1968.
[22]  I. Sahin, “On the stationary analysis of continuous review (s, S) inventory systems with constant lead times,” Operations Research, vol. 27, no. 4, pp. 717–729, 1979.
[23]  C. Palm, “Analysis of the Erlang traffic formula for busy signal arrangements,” EricssonTechnics, vol. 5, pp. 39–58, 1938.
[24]  J. A. Muckstadt, Analysis and Algorithms for Service Parts Supply Chains, Springer, NewYork, NY, USA, 2000.
[25]  H. P. Galliher, P. M. Morse, and M. Simond, “Dynamics of two classes of continuous reviewinventory systems,” Operations Research, vol. 7, pp. 362–384, 1959.
[26]  W. K. Kruse, “Waiting time in a continuous review (s, S) inventory system with constant lead times,” Operations Research, vol. 29, no. 1, pp. 202–207, 1981.
[27]  W. H. Hausman, H. L. Lee, and A. X. Zhang, “Joint demand fulfillment probability in a multi-item inventory system with independent order-up-to policies,” European Journal of Operational Research, vol. 109, no. 3, pp. 646–659, 1998.
[28]  S. Axsater, “Simple solution procedures for a class of two-echelon inventory problems,” Operations Research, vol. 38, no. 1, pp. 64–69, 1990.
[29]  P. Zipkin, “Evaluation of base-stock policies in multiechelon inventory systems with compound-Poisson demands,” Naval Research Logistics,, vol. 38, pp. 397–412, 1991.
[30]  Y. Zhao and D. Simchi-Levi, “Performance analysis and evaluation of assemble-to-order systems with stochastic sequential lead times,” Operations Research, vol. 54, no. 4, pp. 706–724, 2006.
[31]  D. Simchi-Levi and Y. Zhao, “Safety stock positioning in supply chains with stochastic lead times,” Manufacturing and Service Operations Management, vol. 7, no. 4, pp. 295–318, 2005.
[32]  R. Forsberg, “Optimization of order-up-to-S policies for two-level inventory systems with compound Poisson demand,” European Journal of Operational Research, vol. 81, no. 1, pp. 143–153, 1995.
[33]  Y. Zhao, “Evaluation and optimization of installation base-stock policies in supply chainswith compound Poisson processes,” Operations Research, vol. 56, pp. 437–452, 2008.
[34]  V. G. Kulkarni, Modeling and Analysis of Stochastic Systems, Chapman & Hall, New York, NY, USA, 1995.
[35]  S. Axsater, “Optimization of order-up-to-S policies in two-echelon inventory systems with periodic review,” Naval Research Logistics, vol. 40, pp. 245–253, 1993.
[36]  S. Axsater, “Continuous review policies for multi-level inventory systems with stochastic demand,” in Logistics of Production and Inventory, S. Graves, A. Rinnooy Kan, and P. Zipkin, Eds., Elsevier; North-Holland, Amsterdam, The Netherlands, 1993.
[37]  S. Axsater, “Exact analysis of continuous review (R, Q) policies in two-echelon inventory systems with compound Poisson demand,” Operations Research, vol. 48, no. 5, pp. 686–696, 2000.
[38]  T. Boyaci and G. Gallego, “Serial production/distribution systems under service constraints,” Manufacturing and Service Operations Management, vol. 3, no. 1, pp. 43–50, 2001.
[39]  K. H. Shang and J. S. Song, “A closed-form approximation for serial inventory systems and its application to system design,” Manufacturing and Service Operations Management, vol. 8, no. 4, pp. 394–406, 2006.
[40]  S. Axsater and K. Rosling, “Notes: installation vs. Echelon stock policies for multilevelinventory control,” Management Science, vol. 39, pp. 1274–1280, 1993.
[41]  S. Axsater and L. Juntti, “Comparison of echelon stock and installation stock policies for two-level inventory systems,” International Journal of Production Economics, vol. 45, no. 1–3, pp. 303–310, 1996.
[42]  S. Axsater, “Simple evaluation of echelon stock (R, Q) policies for two-level inventory systems,” IIE Transactions, vol. 29, no. 8, pp. 661–669, 1997.
[43]  F. Chen and Y. S. Zheng, “One-warehouse multiretailer systems with centralized stock information,” Operations Research, vol. 45, no. 2, pp. 275–287, 1997.
[44]  F. Chen and Y. S. Zheng, “Evaluating echelon stock (R, nQ) policies in serial production/inventory systems with stochastic demand,” Management Science, vol. 40, no. 10, pp. 1262–1275, 1994.
[45]  G. J. van Houtum and W. H. M. Zijm, “Computational procedures for stochastic multi-echelon production systems,” International Journal of Production Economics, vol. 23, no. 1–3, pp. 223–237, 1991.
[46]  G. J. van Houtum and W. H. M. Zijm, “Incomplete convolutions in production and inventory models,” OR Spectrum, vol. 19, no. 2, pp. 97–107, 1997.
[47]  F. Chen and Y. S. Zheng, “Lower bounds for multi-echelon stochastic inventory systems,” Management Science, vol. 40, pp. 1426–1443, 1994.
[48]  G. Gallego and P. Zipkin, “Stock positioning and performance estimation in serial production transportation systems,” Manufacturing and Service Operations Management, vol. 1, pp. 77–88, 1999.
[49]  R. Badinelli, “A model for continuous-review pull policies in serial inventory systems,” Operations Research, vol. 40, pp. 142–156, 1992.
[50]  F. Chen, “Echelon reorder points, installation reorder points, and the value of centralizeddemand information,” Management Science, vol. 44, pp. 0221–0234, 1998.
[51]  S. C. Graves, “Multi-echelon inventory model for a repairable item with one-for-one replenishment,” Management Science, vol. 31, no. 10, pp. 1247–1256, 1985.
[52]  K. H. Shang and J. S. Song, “News vendor bounds and heuristic for optimal policies in serial supply chains,” Management Science, vol. 49, no. 5, pp. 618–638, 2003.
[53]  F. Chen and Y. S. Zheng, “Near-optimal echelon-stock (R, nQ) policies in multistage serial systems,” Operations Research, vol. 46, no. 4, pp. 592–602, 1998.
[54]  S. Axaster, “Evaluation of installation stock based (R, Q)-policies for two-level inventory systems with poisson demand,” Operations Research, vol. 46, no. 3, pp. S135–S145, 1998.
[55]  K. L. Cheung and W. H. Hausman, “Exact performance evaluation for the supplier in a two-echelon inventory system,” Operations Research, vol. 48, no. 4, pp. 646–653, 2000.
[56]  R. M. Simon, “Stationary properties of a two- echelon inventory model for low demand items,” Operations Research, vol. 19, no. 3, pp. 761–773, 1971.
[57]  K. Shanker, “Exact analysis of a two-echelon inventory system for recoverable items under batch inspection policy,” Naval Research Logistics Quarterly, vol. 28, no. 4, pp. 579–601, 1981.
[58]  J. A. Muckstadt, “A model for a multi-item, multi-echelon, multi-indenture inventory system,” Management Science, vol. 20, no. 4, pp. 472–481, 1973.
[59]  C. C. Sherbrooke, “VARI-METRIC: improved approximations for multi-indenture, multiechelon availability models,” Operations Research, vol. 34, no. 2, pp. 311–319, 1986.
[60]  A. J. Clark and H. Scarf, “Optimal policies for a multi-echelon inventory problem,” Management Science, vol. 50, no. 12, pp. 1782–1795, 2004.
[61]  A. Federgruen and P. Zipkin, “Approximation of dynamic, multi-location production and inventory problems,” Management Science, vol. 30, no. 1, pp. 69–84, 1984.
[62]  G. P. Cachon, “Exact evaluation of batch-ordering inventory policies in two-echelon supply chains with periodic review,” Operations Research, vol. 49, no. 1, pp. 79–98, 2001.
[63]  S. C. Graves, “A multiechelon inventory model with fixed replenishment intervals,” Management Science, vol. 42, no. 1, pp. 1–18, 1996.
[64]  B. Deuermeyer and L. B. Schwarz, “A model for the analysis of system service level in warehouse/retailer distribution systems: the identical retailer case,” in Multilevel Production/Inventory Control Systems: Theory and Practice, L. Schwarz, Ed., Elsevier; North-Holland, Amsterdam, The Netherlands, 1981.
[65]  H. L. Lee and K. Moinzadeh, “Two-parameter approximations for multi-echelon repairable inventory models with batch ordering policy,” IIE Transactions, vol. 19, no. 2, pp. 140–149, 1987.
[66]  H. L. Lee and K. Moinzadeh, “Operating characteristics of a two-echelon inventory systemfor repairable and consumable items under batch ordering and shipment policy,” Naval Research Logistics Quarterly, vol. 34, pp. 365–380, 1987.
[67]  A. Svoronos and P. Zipkin, “Estimating the performance of multi-level inventory system,” Operations Research, vol. 36, no. 1, pp. 57–72, 1988.
[68]  R. Forsberg, “Exact evaluation of (R, Q)-policies for two-level inventory systems with Poisson demand,” European Journal of Operational Research, vol. 96, no. 1, pp. 130–138, 1997.
[69]  M. Fleischmann, R. Kuik, and R. Dekker, “Controlling inventories with stochastic item returns: a basic model,” European Journal of Operational Research, vol. 138, no. 1, pp. 63–75, 2002.
[70]  V. Deshpande, M. A. Cohen, and K. Donohue, “A threshold inventory rationing policy for service-differentiated demand classes,” Management Science, vol. 49, no. 6, pp. 683–703, 2003.
[71]  K. L. Cheung and W. H. Hausman, “Multiple failures in a multi-item spares inventory model,” IIE Transactions, vol. 27, no. 2, pp. 171–180, 1995.
[72]  Y. Ak?ay and S. H. Xu, “Joint inventory replenishment and component allocation optimization in an assemble-to-order system,” Management Science, vol. 50, no. 1, pp. 99–116, 2004.
[73]  J. S. Song and D. D. Yao, “Performance analysis and optimization of assemble-to-order systems with random lead times,” Operations Research, vol. 50, no. 5, pp. 889–903, 2002.
[74]  Y. Lu, J. S. Song, and D. D. Yao, “Order fill rate, leadtime variability, and advance demand information in an assemble-to-order system,” Operations Research, vol. 51, no. 2, pp. 292–308, 2003.
[75]  Y. Lu, J. S. Song, and D. D. Yao, “Backorder minimization in multiproduct assemble-to-order systems,” IIE Transactions, vol. 37, no. 8, pp. 763–774, 2005.
[76]  Y. Lu and J. S. Song, “Order-based cost optimization in assemble-to-order systems,” Operations Research, vol. 53, no. 1, pp. 151–169, 2005.
[77]  J. Gallien and L. M. Wein, “A simple and effective component procurement policy for stochastic assembly systems,” Queueing Systems, vol. 38, no. 2, pp. 221–248, 2001.
[78]  S. Dayanik, J. S. Song, and S. H. Xu, “The effectiveness of several performance bounds for capacitated assemble-to-order systems,” Manufacturing and Service Operations Management, vol. 5, no. 3, pp. 230–251, 2003.
[79]  J. S. Song, “On the order fill rate in a multi-item, base-stock inventory system,” Operations Research, vol. 46, no. 6, pp. 831–845, 1998.
[80]  J. S. Song, “Order-based backorders and their implications in multi-item inventory systems,” Management Science, vol. 48, no. 4, pp. 499–516, 2002.
[81]  J. S. Song, “Note on assemble-to-order systems with batch ordering,” Management Science, vol. 46, no. 5, pp. 739–743, 2000.
[82]  A. X. Zhang, “Demand fulfillment rates in an assemble-to-order system with multiple products and dependent demands,” Production and Operations Management, vol. 6, no. 3, pp. 309–323, 1997.
[83]  N. Agrawal and M. A. Cohen, “Optimal material control in an assembly system with component commonality,” Naval Research Logistics, vol. 48, no. 5, pp. 409–429, 2001.
[84]  T. G. de Kok, “Evaluation and optimization of strongly ideal Assemble-To-Order systems,” Tech. Rep., Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2003.
[85]  M. Ettl, G. E. Feigin, G. Y. Lin, and D. D. Yao, “Supply network model with base-stock control and service requirements,” Operations Research, vol. 48, no. 2, pp. 216–232, 2000.
[86]  J. Shi and Y. Zhao, “Technical note: some structural results on acyclic supply chains,” Naval Research Logistics, vol. 57, no. 6, pp. 605–613, 2010.
[87]  E. Feitzinger and H. L. Lee, “Mass customization through postponement,” Harvard Business Review, vol. 75, pp. 116–121, 1997.
[88]  G. DeCroix, J. S. Song, and P. Zipkin, “A series system with returns: stationary analysis,” Operations Research, vol. 53, no. 2, pp. 350–362, 2005.
[89]  G. A. DeCroix and P. H. Zipkin, “Inventory management for an assembly system with product or component returns,” Management Science, vol. 51, no. 8, pp. 1250–1265, 2005.
[90]  J. Buzacott, S. Price, and J. Shanthikumar, “Service level in multi-stage MRP and base-stock controlled production systems,” in New Directions for Operations Research in Manufacturing, G. Fandel, T. Gulledge, and A. Hones, Eds., Springer, Berlin, Germany, 1991.
[91]  J. S. Song, S. H. Xu, and B. Liu, “Order-fulfillment performance measures in an assemble-to-order system with stochastic leadtimes,” Operations Research, vol. 47, no. 1, pp. 131–149, 1999.
[92]  Y. J. Lee and P. Zipkin, “Tandem queues with planned inventories,” Operations Research, vol. 40, no. 5, pp. 936–947, 1992.
[93]  P. Glasserman and S. Tayur, “A simple approximation for a multistage capacitated production-inventory system,” Naval Research Logistics, vol. 43, no. 1, pp. 41–58, 1996.
[94]  L. Liu, X. Liu, and D. D. Yao, “Analysis and optimization of a multistage inventory-queue system,” Management Science, vol. 50, no. 3, pp. 365–380, 2004.
[95]  P. Glasserman and S. Tayur, “Sensitivity analysis for base-stock levels in multiechelon production-inventory systems,” Management Science, vol. 41, no. 2, pp. 263–281, 1995.
[96]  S. C. Graves and S. P. Willems, “Strategic inventory placement in supply chains: non stationary demand,” Tech. Rep., Sloan School of Management, MIT, Cambridge, Mass, USA, 2005.
[97]  N. Erkip, W. H. Hausman, and S. Nahmias, “Optimal centralized ordering policies in multi-echelon inventory systems with correlated demands,” Management Science, vol. 36, no. 3, pp. 381–392, 1990.
[98]  G. D. L. Schrage, “Centralized ordering policies in a multi-warehouse system with lead time and random demand,” in Multi-level Production/Inventory Systems: Theory and Practice, L. B. Schwarz, Ed., pp. 51–67, North-Holland, Amsterdam, The Netherlands, 1981.
[99]  L. Dong and H. L. Lee, “Optimal policies and approximations for a serial multiechelon inventory system with time-correlated demand,” Operations Research, vol. 51, no. 6, pp. 969–980, 2003.
[100]  V. A. Truong, R. Levi, and R. O. Roundy, “Provably nearly optimal balancing policies formulti-echelon stochastic inventory control models,” Tech. Rep., Cornell University, New York, NY, USA, 2006.
[101]  W. Feller, An Introduction to Probability Theory and Its Applications, vol. 2, John Wiley & Sons, New York, NY, USA, 2nd edition, 1971.
[102]  B. Melamed and W. Whitt, “On arrivals that see time averages,” Operations Research, vol. 38, no. 1, pp. 156–172, 1990.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413