全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fast Optical Beamforming Architectures for Satellite-Based Applications

DOI: 10.1155/2012/385409

Full-Text   Cite this paper   Add to My Lib

Abstract:

Photonic technology offers an alternative implementation for the control of phased array antennas providing large time bandwidth products and low weight, flexible feeding networks. Measurements of an optical beamforming network for phased array antennas with fast beam steering operation for space scenarios are presented. Experimental results demonstrate fast beam steering between 4 and 8?GHz without beam squint. 1. Introduction The evolution of satellite communication and Earth observation missions has shown a clear trend towards systems with higher performance resulting in higher complexity. More in particular, a key requirement for modern space missions is the operation at wide bandwidths. As far as communication satellites are concerned, wide bandwidths are of great interest in order to accommodate broadband data connections, multiuser operation rates, and wider communications coverage. On the other side, Earth observation platforms also benefit from broadband microwave instruments which can provide a larger number of channels from which more complete and diverse remote sensing information can be extracted. Additionally, advanced satellite missions are expected to provide high versatility through capabilities such as scanning and multibeam operation which combined to on-board information processing that allow the assignment of resources dynamically. Wide bandwidth operation requires antenna array systems capable of providing true-time delay (TTD) to avoid beam squint (i.e., changes in the beam steering angle with frequency). However microwave implementations of TTD beamforming networks are rather bulky and heavy with poor harness characteristics, sensitivity to electromagnetic interference and a relatively large crosstalk level which degrade the performance of remote sensing instruments. On the other hand, photonics allows the implementation of TTD beamforming networks without the problems associated with microwave implementations. Optical beamforming has been studied since the early 90s [1] because it provides many advantages over microwave and digital beamforming, such as light-weight, small size, wideband operation, flexibility, remoting capability, and immunity to electromagnetic interference. Different optical beamforming networks have been presented using a variety of components and arrangements [1–9]. Additionally, some optical beamforming architectures [10–13] offer the capability to control a set of independent beams simultaneously, that is, multibeam operation, although at the cost of increasing the complexity. This paper reports on the

References

[1]  W. Ng, A. A. Walston, G. L. Tangonan, I. L. Newberg, J. J. Lee, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” Journal of Lightwave Technology, vol. 9, no. 9, pp. 1124–1131, 1991.
[2]  D. T. K. Tong and M. C. Wu, “A novel multiwavelength optically controlled phased array antenna with a programmable dispersion matrix,” IEEE Photonics Technology Letters, vol. 8, no. 6, pp. 812–814, 1996.
[3]  B. Vidal, J. L. Corral, M. A. Piqueras, and J. Martí, “Optical delay line based on arrayed waveguide gratings' spectral periodicity and dispersive media for antenna beamforming applications,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, no. 6, pp. 1202–1210, 2002.
[4]  B. Vidal, J. L. Corral, and J. Martí, “Optical delay line employing an arrayed waveguide grating in fold-back configuration,” IEEE Microwave and Wireless Components Letters, vol. 13, no. 6, pp. 238–240, 2003.
[5]  B. Vidal, T. Mengual, C. Ibá?ez-López et al., “Simplified WDM optical beamforming network for large antenna arrays,” IEEE Photonics Technology Letters, vol. 18, no. 10, pp. 1200–1202, 2006.
[6]  M. A. Piqueras, G. Grosskopf, B. Vidal et al., “Optically beamformed beam-switched adaptive antennas for fixed and mobile broad-band wireless access networks,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 2, pp. 887–899, 2006.
[7]  B. Vidal, T. Mengual, C. Ibá?ez-López, and J. Martí, “Optical beamforming network based on fiber-optical delay lines and spatial light modulators for large antenna arrays,” IEEE Photonics Technology Letters, vol. 18, no. 24, pp. 2590–2592, 2006.
[8]  L. Jofre, C. Stoltidou, S. Blanch et al., “Optically beamformed wideband array performance,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 6, pp. 1594–1604, 2008.
[9]  L. Zhuang, C. G. H. Roeloffzen, A. Meijerink et al., “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas-part II: experimental prototype,” Journal of Lightwave Technology, vol. 28, no. 1, pp. 19–31, 2010.
[10]  N. A. Riza, “An acoustooptic-phased-array antenna beamformer for multiple simultaneous beam generation,” IEEE Photonics Technology Letters, vol. 4, no. 7, pp. 807–809, 1992.
[11]  R. D. Esman, M. Y. Frankel, J. L. Dexter et al., “Fiber-optic prism true time-delay antenna feed,” IEEE Photonics Technology Letters, vol. 5, no. 11, pp. 1347–1349, 1993.
[12]  B. Vidal, M. A. Piqueras, and J. Martí, “Multibeam photonic beamformer based on optical filters,” IEE Electronics Letters, vol. 42, no. 17, pp. 980–981, 2006.
[13]  L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic beamformer receiver with multiple beam capabilities,” IEEE Photonics Technology Letters, vol. 22, no. 23, pp. 1723–1725, 2010.
[14]  B. R. Elbert, The Satellite Communications Applications Handbook, Artech House, Norwood, NJ, USA, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413