全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Realization of Radar Illusion Using Active Devices

DOI: 10.1155/2012/736876

Full-Text   Cite this paper   Add to My Lib

Abstract:

A new method is proposed for realizing radar illusion of an electromagnetic target by using active devices. The devices are installed around the target but may closely cover the target or not, leading to closed or open configurations. The amplitudes and phases of the active devices are determined by using T-matrix method. The numerical computation is calculated using MATLAB, and the results show that this method is convenient, flexible, and efficient, which has important significances for implementation of novel electromagnetic devices. 1. Introduction Since invisible cloaking using metamaterials was theoretically proposed and experimentally demonstrated in 2006 [1, 2], various methods have been put forward for realizing this fabulous electromagnetic (EM) phenomenon [1–8]. Generally speaking, EM invisibility, or illusion in general, can be roughly divided into four categories: (1) rendering the object transparent or invisible by controlling the parameters of metamaterials based on the scattering cancellation theory [7, 9]; (2) making the object invisible or illusory by exploiting the abnormal EM properties and the special ability to control EM waves of metamaterials based on the transformation optics theory [10, 11]; (3) invisibility using anomalous localized resonance method [12, 13]; (4) realizing invisibility or illusion using the surface integral equation of the EM field based on active devices [14–18]. So far, realization of radar illusion for an EM target is mainly based on the method of transformation optics [19–26]. Compared with the transformation optics method, active devices can be designed to work at a broadband of frequencies and do not need materials with extreme parameters. However, only a few works on radar illusion have been reported for an object by using active devices [17, 18], to the best of our knowledge. In this paper, we use two kinds of active devices to realize the radar illusion of an object. One is called the closed configuration, where the active devices are set around and closely wrap the object. The other is called open configuration, where the active devices are deployed around the object but do not cover it. The drawback of the former one is that signals from outside have been blocked, leading to poor communication for the target, while the latter does not affect the information transmission. Compared to the previous works [14–18], our scheme can not only make an object invisible to the outsider but also mimic a totally different object at a different place. It is thus a direct extension of the original work. In the next

References

[1]  J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science, vol. 312, no. 5781, pp. 1780–1782, 2006.
[2]  D. Schurig, J. J. Mock, B. J. Justice et al., “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977–980, 2006.
[3]  B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Physical Review Letters, vol. 106, no. 3, Article ID 033901, 2011.
[4]  X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nature Communications, vol. 2, article 176, 2011.
[5]  G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New Journal of Physics, vol. 8, no. 10, p. 248, 2006.
[6]  H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nature Communications, vol. 1, article 21, 2010.
[7]  A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Physical Review E, vol. 72, no. 1, pp. 1–9, 2005.
[8]  H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nature Materials, vol. 9, no. 5, pp. 387–396, 2010.
[9]  L. Sun and K. W. Yu, “Broadband electromagnetic transparency by graded metamaterials: scattering cancellation scheme,” Journal of the Optical Society of America B, vol. 28, no. 5, pp. 994–1001, 2011.
[10]  W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Coordinate transformations make perfect invisibility cloaks with arbitrary shape,” New Journal of Physics, vol. 10, no. 4, pp. 1–13, 2008.
[11]  Y. You, G. W. Kattawar, P. W. Zhai, and P. Yang, “Invisibility cloaks for irregular particles using coordinate transformations,” Optics Express, vol. 16, no. 9, pp. 6134–6145, 2008.
[12]  G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proceedings of the Royal Society A, vol. 462, no. 2074, pp. 3027–3059, 2006.
[13]  N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Optics Express, vol. 15, no. 10, pp. 6314–6323, 2007.
[14]  D. A. B. Miller, “On perfect cloaking,” Optics Express, vol. 14, no. 25, pp. 12457–12466, 2006.
[15]  F. G. Vasquez, G. W. Milton, and D. Onofrei, “Broadband exterior cloaking,” Optics Express, vol. 17, no. 17, pp. 14800–14805, 2009.
[16]  F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Physical Review Letters, vol. 103, no. 7, Article ID 073901, 2009.
[17]  H. H. Zheng, J. J. Xiao, Y. Lai, and C. T. Chan, “Exterior optical cloaking and illusions by using active sources: a boundary element perspective,” Physical Review B, vol. 81, no. 19, pp. 1–10, 2010.
[18]  B. Z. Cao and L. Sun, “A new method for realizing illusion and shift of electromagnetic target based on active devices,” in Proceedings of the International Conference of Microwave and Millimeter Wave Technology (ICMMT '12), vol. 3, pp. 1–4, 2012.
[19]  Y. Lai, J. Ng, H. Chen et al., “Illusion optics: the optical transformation of an object into another object,” Physical Review Letters, vol. 102, no. 25, pp. 1–4, 2009.
[20]  W. X. Jiang and T. J. Cui, “Moving targets virtually via composite optical transformation,” Optics Express, vol. 18, no. 5, pp. 5161–5167, 2010.
[21]  W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “Illusion media: generating virtual objects using realizable metamaterials,” Applied Physics Letters, vol. 96, no. 12, Article ID 121910, 2010.
[22]  T. Yang, H. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Optics Express, vol. 16, no. 22, pp. 18545–18550, 2008.
[23]  W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “Virtual conversion from metal object to dielectric object using metamaterials,” Optics Express, vol. 18, no. 11, pp. 11276–11281, 2010.
[24]  W. X. Jiang and T. J. Cui, “Radar illusion via metamaterials,” Physical Review E, vol. 83, no. 2, Article ID 026601, 2011.
[25]  W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Applied Physics Letters, vol. 98, no. 20, Article ID 204101, 2011.
[26]  C. Li and F. Li, “Two-dimensional electromagnetic cloaks with arbitrary geometries,” Optics Express, vol. 16, no. 17, pp. 13414–13420, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413