全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nanocouplers for Infrared and Visible Light

DOI: 10.1155/2012/839747

Full-Text   Cite this paper   Add to My Lib

Abstract:

An efficient and compact coupler—a device that matches a microwaveguide and a nanowaveguide—is an essential component for practical applications of nanophotonic systems. The number of coupling approaches has been rapidly increasing in the past ten years with the help of plasmonic structures and metamaterials. In this paper we overview recent as well as common solutions for nanocoupling. More specifically we consider the physical principles of operation of the devices based on a tapered waveguide section, a direct coupler, a lens, and a scatterer and support them with a number of examples. 1. Introduction Photonic components have advantages comparing to the electronic ones. Infrared and optical frequencies 1014-1015?Hz provide much broader operational bandwidth than the fastest electronic circuits. The losses in optical waveguides are smaller than in metallic wires. This is why, as D. Miller wrote, “the optical interconnects are progressively replacing wires” [1]. To achieve larger functionality on an integrated optical chip the optical components have to be miniaturized. A natural limitation, however, comes into play: the diffraction limit claims that we cannot focus light in a spot less than a half of the wavelength. The transverse size of conventional dielectric waveguides (e.g., silicon waveguides) is also limited to a half of the wavelength. Only employment of metals allows to overcome the diffraction limit and to confine a wave to a smaller area, very often at the cost of increased propagation losses. Nevertheless, the problem is not only to create efficient waveguides that provide subwavelength mode confinement, but also to make an efficient interface between free space or an optical fiber and a subwavelength nanowaveguide, that is, to focus light and launch it efficiently into the waveguide. The artistic view of the situation is depicted in Figure 1. Trying to pour water from a big bowl into a bottle with a narrow bottleneck, one would waste a lot. However, usage of a funnel simplifies the task and increases the efficiency significantly. An optical coupler plays the role of a funnel for light. Figure 1: An artistic view of the problem of coupling light from a wide microscopic fiber to a nanoscopic waveguide. Employment of a coupler, which is represented by a funnel on the figure, minimizes the losses and simplifies optical alignment. The problem of optical coupling originates from the pronounced modal mismatch between an optical fiber (a conventional single-mode telecommunication fiber has the core of 8?μm in diameter) and a nanosized waveguide,

References

[1]  D. A. B. Miller, “Optical interconnects to electronic chips,” Applied Optics, vol. 49, no. 25, pp. F59–F70, 2010.
[2]  S. Kawata, M. Ohtsu, and M. Irie, Nano-Optics, vol. 84, Springer, 2002.
[3]  S. A. Maie, Plasmonics: Fundamentals and Applications, Springer, 2007.
[4]  S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits, Pan Stanford, 2008.
[5]  R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” Journal of the Optical Society of America A, vol. 21, no. 12, pp. 2442–2446, 2004.
[6]  A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” Journal of Lightwave Technology, vol. 23, no. 1, pp. 413–422, 2005.
[7]  S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Optics Express, vol. 14, no. 20, pp. 9467–9476, 2006.
[8]  S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Physical Review Letters, vol. 95, no. 4, Article ID 046802, 4 pages, 2005.
[9]  E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Physical Review Letters, vol. 100, no. 2, Article ID 023901, 4 pages, 2008.
[10]  L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Optics Express, vol. 13, no. 17, pp. 6645–6650, 2005.
[11]  G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” Journal of Lightwave Technology, vol. 25, no. 9, pp. 2511–2521, 2007.
[12]  S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Applied Physics Letters, vol. 81, no. 9, Article ID 1714, 3 pages, 2002.
[13]  M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics, vol. 131, Springer, 2007.
[14]  M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Optics Express, vol. 19, no. 22, pp. 22029–22106, 2011.
[15]  D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics, vol. 4, no. 2, pp. 83–91, 2010.
[16]  S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Optics Letters, vol. 19, no. 11, pp. 780–782, 1994.
[17]  E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nature Photonics, vol. 3, no. 3, pp. 144–147, 2009.
[18]  G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Optics Express, vol. 12, no. 10, pp. 2258–2263, 2004.
[19]  M. Sumetsky, “How thin can a microfiber be and still guide light?” Optics Letters, vol. 31, no. 7, pp. 870–872, 2006.
[20]  L. Zimmermann, “State of the art and trends in silicon photonics packaging,” 2011, http://www.siliconphotonics.eu/workshop230511_slides.html.
[21]  Q. V. Tran, S. Combrí, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Applied Physics Letters, vol. 95, no. 6, Article ID 061105, 3 pages, 2009.
[22]  N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, and J. M?rk, “Controlling the emission profile of a nanowire with a conical taper,” Optics Letters, vol. 33, no. 15, pp. 1693–1695, 2008.
[23]  J. Claudon, J. Bleuse, N. S. Malik et al., “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photonics, vol. 4, no. 3, pp. 174–177, 2010.
[24]  V. M. N. Passaro and M. la Notte, “Optimizing SOI slot waveguide fabrication tolerances and strip-slot coupling for very efficient optical sensing,” Sensors, vol. 12, no. 3, pp. 2436–2455, 2012.
[25]  H. Zhang, J. Zhang, S. Chen et al., “CMOS-compatible fabrication of silicon-based sub-100-nm slot waveguide with efficient channel-slot coupler,” IEEE Photonics Technology Letters, vol. 24, no. 1, pp. 10–12, 2012.
[26]  N. M. Arslanov and S. A. Moiseev, “Ultrahigh interference spatial compression of light inside the subwavelength aperture of a near-field optical probe,” Journal of the Optical Society of America A, vol. 24, no. 3, pp. 831–838, 2007.
[27]  A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Optics Express, vol. 16, no. 23, pp. 18576–18589, 2008.
[28]  J. Liu, R. Mendis, and D. M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Applied Physics Letters, vol. 98, no. 23, Article ID 231113, 3 pages, 2011.
[29]  K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, and P. U. Jepsen, “Non-invasive terahertz field imaging inside parallel plate waveguides,” Applied Physics Letters, vol. 99, no. 7, Article ID 071113, 3 pages, 2011.
[30]  K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, and P. U. Jepsen, “Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide,” Optics Express, vol. 20, no. 8, pp. 8344–8355, 2012.
[31]  D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Applied Physics Letters, vol. 89, no. 4, Article ID 041111, 3 pages, 2006.
[32]  I.-Y. Park, S. Kim, J. Choi et al., “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nature Photonics, vol. 5, no. 11, pp. 677–681, 2011.
[33]  S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Letters, vol. 9, no. 10, pp. 3447–3452, 2009.
[34]  F. Renna, D. Cox, and G. Brambilla, “Efficient sub-wavelength light confinement using surface plasmon polaritons in tapered fibers,” Optics Express, vol. 17, no. 9, pp. 7658–7663, 2009.
[35]  H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Optics Express, vol. 17, no. 9, pp. 7519–7524, 2009.
[36]  M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Physical Review Letters, vol. 93, no. 13, Article ID 137404, 4 pages, 2004.
[37]  S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Physical Review Letters, vol. 97, no. 17, Article ID 176805, 4 pages, 2006.
[38]  E. Verhagen, M. Spasenovi?, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Physical Review Letters, vol. 102, no. 20, Article ID 203904, 4 pages, 2009.
[39]  X. L. Zhou, Y. Q. Fu, S. Y. Wang, A. J. Peng, and Z. H. Cai, “Funnel-shaped arrays of metal nano-cylinders for nano-focusing,” Chinese Physics Letters, vol. 25, no. 9, pp. 3296–3299, 2008.
[40]  A. A. Govyadinov and V. A. Podolskiy, “Metamaterial photonic funnels for subdiffraction light compression and propagation,” Physical Review B, vol. 73, no. 15, Article ID 155108, 5 pages, 2006.
[41]  S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Physical Review B, vol. 81, no. 7, Article ID 075317, 8 pages, 2010.
[42]  C. Rockstuhl, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Metamaterial nanotips,” Applied Physics Letters, vol. 94, no. 11, Article ID 113110, 3 pages, 2009.
[43]  S. Dong, H. Ding, Y. Liu, and X. Qi, “Investigation of evanescent coupling between tapered fiber and a multimode slab waveguide,” Applied Optics, vol. 51, no. 10, pp. C152–C157, 2012.
[44]  R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic—plasmonic coupling and routing in single nanowires,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 50, pp. 21045–21050, 2009.
[45]  Q. Li and M. Qiu, “Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide,” Optics Express, vol. 18, no. 15, pp. 15531–15543, 2010.
[46]  Q. Li, Y. Song, G. Zhou, Y. Su, and M. Qiu, “Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss,” Optics Letters, vol. 35, no. 19, pp. 3153–3155, 2010.
[47]  C. Delacour, S. Blaize, P. Grosse et al., “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Letters, vol. 10, no. 8, pp. 2922–2926, 2010.
[48]  R. Wan, F. Liu, Y. Huang et al., “Excitation of short range surface plasmon polariton mode based on integrated hybrid coupler,” Applied Physics Letters, vol. 97, no. 14, Article ID 141105, 3 pages, 2010.
[49]  Q. Li, S. Wang, Y. Chen, M. Yan, L. Tong, and M. Qiu, “Experimental demonstration of plasmon propagation, coupling, and splitting in silver nanowire at 1550-nm wavelength,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 17, no. 4, pp. 1107–1111, 2010.
[50]  A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nature Nanotechnology, vol. 3, no. 11, pp. 660–665, 2008.
[51]  Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Optics Letters, vol. 34, no. 10, pp. 1498–1500, 2009.
[52]  J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and A. Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Optics Express, vol. 18, no. 5, pp. 5314–5319, 2010.
[53]  J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Applied Physics Letters, vol. 95, no. 1, Article ID 013504, 3 pages, 2009.
[54]  S. Y. Lee, J. Park, M. Kang, and B. Lee, “Highly efficient plasmonic interconnector based on the asymmetric junction between metal-dielectric-metal and dielectric slab waveguides,” Optics Express, vol. 19, no. 10, pp. 9562–9574, 2011.
[55]  Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Optics Express, vol. 18, no. 12, pp. 13173–13179, 2010.
[56]  X. W. Chen, V. Sandoghdar, and M. Agio, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field,” Optics Express, vol. 18, no. 10, pp. 10878–10887, 2010.
[57]  X. W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Letters, vol. 9, no. 11, pp. 3756–3761, 2009.
[58]  R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Letters, vol. 10, no. 12, pp. 4851–4857, 2010.
[59]  Z. Han, A. Y. Elezzabi, and Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Optics Letters, vol. 35, no. 4, pp. 502–504, 2010.
[60]  D. L. MacFarlane, M. P. Christensen, K. Liu et al., “Four-port nanophotonic frustrated total internal reflection coupler,” IEEE Photonics Technology Letters, vol. 24, no. 1, pp. 58–60, 2012.
[61]  P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Optics Express, vol. 15, no. 11, pp. 6762–6767, 2007.
[62]  J. Liu, H. Zhao, Y. Zhang, and S. Liu, “Resonant cavity based antireflection structures for surface plasmon waveguides,” Applied Physics B, vol. 98, no. 4, pp. 797–802, 2010.
[63]  ?. Kocaba?, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Physical Review B, vol. 79, no. 3, Article ID 035120, 17 pages, 2009.
[64]  A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Optics Express, vol. 18, no. 6, pp. 6191–6204, 2010.
[65]  M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics, vol. 10, Pergamon Pr, 1975.
[66]  D. R. Beltrami, J. D. Love, A. Durandet et al., “Planar graded-index (GRIN) PECVD lens,” Electronics Letters, vol. 32, no. 6, pp. 549–550, 1996.
[67]  T. H. Loh, Q. Wang, J. Zhu et al., “Ultra-compact multilayer Si/SiO2 GRIN lens mode-size converter for coupling single-mode fiber to Si-wire waveguide,” Optics Express, vol. 18, no. 21, pp. 21519–21533, 2010.
[68]  “OZ Optics Ltd,” http://ozoptics.com.
[69]  M. D. Feit and J. A. Fleck, “Light propagation in graded-index optical fibers,” Applied Optics, vol. 17, no. 24, pp. 3990–3998, 1978.
[70]  J. M. Nowosielski, R. Buczynski, F. Hudelist, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured GRIN microlenses for Gaussian beam focusing,” Optics Communications, vol. 283, no. 9, pp. 1938–1944, 2010.
[71]  Y. Fu and X. Zhou, “Plasmonic lenses: a review,” Plasmonics, vol. 5, no. 3, pp. 287–310, 2010.
[72]  H. J. Lezec, A. Degiron, E. Devaux et al., “Beaming light from a subwavelength aperture,” Science, vol. 297, no. 5582, pp. 820–822, 2002.
[73]  A. G. Curto, A. Manjavacas, and F. J. G. De Abajo, “Near-field focusing with optical phase antennas,” Optics Express, vol. 17, no. 20, pp. 17801–17811, 2009.
[74]  D. R. Jackson, J. Chen, R. Qiang, F. Capolino, and A. A. Oliner, “The role of leaky plasmon waves in the directive beaming of light through a subwavelength aperture,” Optics Express, vol. 16, no. 26, pp. 21271–21281, 2008.
[75]  L. Martín-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Physical Review Letters, vol. 90, no. 16, Article ID 167401, 4 pages, 2003.
[76]  Y. Fu, C. Du, W. Zhou, and L. E. N. Lim, “Nanopinholes-based optical superlens,” Research Letters in Physics, vol. 2008, Article ID 148505, 5 pages, 2008.
[77]  M. Consonni, J. Hazart, G. ?rondel, and A. Vial, “Nanometer scale light focusing with high cavity-enhanced output,” Journal of Applied Physics, vol. 105, no. 8, Article ID 084308, 6 pages, 2009.
[78]  J. Wang and W. Zhou, “Experimental investigation of focusing of gold planar plasmonic lenses,” Plasmonics, vol. 5, no. 4, pp. 325–329, 2010.
[79]  V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of and ,” Soviet Physics Uspekhi, vol. 10, no. 4, pp. 509–514, 1968.
[80]  J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, vol. 85, no. 18, pp. 3966–3969, 2000.
[81]  N. H. Shen, S. Foteinopoulou, M. Kafesaki et al., “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Physical Review B, vol. 80, no. 11, Article ID 115123, 9 pages, 2009.
[82]  K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Physics Reports, vol. 444, no. 3–6, pp. 101–202, 2007.
[83]  W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer, 2009.
[84]  A. Degiron, D. R. Smith, J. J. Mock, B. J. Justice, and J. Gollub, “Negative index and indefinite media waveguide couplers,” Applied Physics A, vol. 87, no. 2, pp. 321–328, 2007.
[85]  A. Andryieuski, C. Menzel, C. Rockstuhl, R. Malureanu, F. Lederer, and A. Lavrinenko, “Homogenization of resonant chiral metamaterials,” Physical Review B, vol. 82, no. 23, Article ID 235107, 7 pages, 2010.
[86]  A. Andryieuski, C. Menzel, C. Rockstuhl, R. Malureanu, and A. V. Lavrinenko, “The split cube in a cage: bulk negative-index material for infrared applications,” Journal of Optics A, vol. 11, no. 11, Article ID 114010, 2009.
[87]  A. K. Iyer and G. V. Eleftheriades, “A three-dimensional isotropic transmission-line metamaterial topology for free-space excitation,” Applied Physics Letters, vol. 92, no. 26, Article ID 261106, 3 pages, 2008.
[88]  C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach, Wiley-IEEE Press, 2006.
[89]  T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Physical Review B, vol. 71, no. 12, Article ID 121103, 4 pages, 2005.
[90]  V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” Journal of Physics Condensed Matter, vol. 17, no. 25, pp. 3717–3734, 2005.
[91]  I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microwave and Optical Technology Letters, vol. 48, no. 12, pp. 2553–2556, 2006.
[92]  A. G. Kussow, A. Akyurtlu, and N. Angkawisittpan, “Optically isotropic negative index of refraction metamaterial,” Physica Status Solidi (B), vol. 245, no. 5, pp. 992–997, 2008.
[93]  A. Alù and N. Engheta, “Three-dimensional nanotransmission lines at optical frequencies: a recipe for broadband negative-refraction optical metamaterials,” Physical Review B, vol. 75, no. 2, Article ID 024304, 20 pages, 2007.
[94]  C. Menzel, C. Rockstuhl, R. Iliew et al., “High symmetry versus optical isotropy of a negative-index metamaterial,” Physical Review B, vol. 81, no. 19, Article ID 195123, 6 pages, 2010.
[95]  Y. Sivan, S. Xiao, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Frequency-domain simulations of a negativeindex material with embedded gain,” Optics Express, vol. 17, no. 26, pp. 24060–24074, 2009.
[96]  A. N. Lagarkov, V. N. Kisel, and A. K. Sarychev, “Loss and gain in metamaterials,” Journal of the Optical Society of America B, vol. 27, no. 4, pp. 648–659, 2010.
[97]  A. Fang, T. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Physical Review B, vol. 79, no. 24, Article ID 241104, 4 pages, 2009.
[98]  A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science, vol. 331, no. 6015, pp. 290–291, 2011.
[99]  P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser and Photonics Reviews, vol. 4, no. 6, pp. 795–808, 2010.
[100]  X.-X. Liu and A. Alù, “Limitations and potentials of metamaterial lenses,” Journal of Nanophotonics, vol. 5, no. 1, Article ID 053509, 2011.
[101]  M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Physical Review B, vol. 62, no. 16, pp. 10696–10705, 2000.
[102]  P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Physical Review B, vol. 71, no. 19, Article ID 193105, 4 pages, 2005.
[103]  W. ?migaj, B. Gralak, R. Pierre, and G. Tayeb, “Antireflection gratings for a photonic-crystal flat lens,” Optics Letters, vol. 34, no. 22, pp. 3532–3534, 2009.
[104]  B. D. F. Casse, W. T. Lu, R. K. Banyal et al., “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Optics Letters, vol. 34, no. 13, pp. 1994–1996, 2009.
[105]  M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal flat lenses with ,” Optics Communications, vol. 283, no. 6, pp. 1169–1173, 2010.
[106]  D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Physical Review Letters, vol. 90, no. 7, Article ID 077405, 4 pages, 2003.
[107]  D. R. Smith, P. Kolinko, and D. Schurig, “Negative refraction in indefinite media,” Journal of the Optical Society of America B, vol. 21, no. 5, pp. 1032–1043, 2004.
[108]  Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Semiclassical theory of the hyperlens,” Journal of the Optical Society of America A, vol. 24, no. 10, pp. A52–A59, 2007.
[109]  M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Physical Review B, vol. 75, no. 3, Article ID 035108, 12 pages, 2007.
[110]  J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Applied Physics Letters, vol. 89, no. 26, Article ID 261102, 3 pages, 2006.
[111]  P. A. Belov, P. Ikonen, C. R. Simovski, Y. Hao, and S. A. Tretyakov, “Magnification of subwavelength field distributions using a tapered array of wires operating in the canalization regime,” in Proceedings of the IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting (APSURSI '08), pp. 8–11, July 2008.
[112]  Y. Zhao, P. Belov, and Y. Hao, “Subwavelength internal imaging by means of a wire medium,” Journal of Optics A, vol. 11, no. 7, Article ID 075101, 2009.
[113]  P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Physical Review B, vol. 73, no. 3, Article ID 033108, 4 pages, 2006.
[114]  A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Physical Review B, vol. 79, no. 24, Article ID 245127, 7 pages, 2009.
[115]  S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nature Photonics, vol. 2, no. 7, pp. 438–442, 2008.
[116]  J. Yao, K. T. Tsai, Y. Wang et al., “Imaging visible light using anisotropic metamaterial slab lens,” Optics Express, vol. 17, no. 25, pp. 22380–22385, 2009.
[117]  B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Applied Physics Letters, vol. 96, no. 2, Article ID 023114, 3 pages, 2010.
[118]  Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Optics Express, vol. 14, no. 18, pp. 8247–8256, 2006.
[119]  C. Jeppesen, R. B. Nielsen, A. Boltasseva, S. Xiao, N. A. Mortensen, and A. Kristensen, “Thin film Ag superlens towards lab-on-a-chip integration,” Optics Express, vol. 17, no. 25, pp. 22543–22552, 2009.
[120]  Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20?nm,” Applied Physics Letters, vol. 94, no. 20, Article ID 203108, 3 pages, 2009.
[121]  Q. Meng, X. Zhang, L. Cheng et al., “Deep subwavelength focusing of light by a trumpet hyperlens,” Journal of Optics, vol. 13, no. 7, Article ID 075102, 2011.
[122]  J. Kerbst, S. Schwaiger, A. Rottler et al., “Enhanced transmission in rolled-up hyperlenses utilizing Fabry-Pérot resonances,” Applied Physics Letters, vol. 99, no. 19, Article ID 191905, 3 pages, 2011.
[123]  P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Advances in Optics and Photonics, vol. 1, no. 2, pp. 438–483, 2009.
[124]  C. A. Balanis, Antenna Theory, Wiley, New York, NY, USA, 1997.
[125]  J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Optics Express, vol. 17, no. 8, pp. 5925–5932, 2009.
[126]  J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Letters, vol. 9, no. 5, pp. 1897–1902, 2009.
[127]  Z. Fang, Y. Lu, L. Fan, C. Lin, and X. Zhu, “Surface plasmon polariton enhancement in silver nanowire-nanoantenna structure,” Plasmonics, vol. 5, no. 1, pp. 57–62, 2010.
[128]  Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with Ag nanowire,” Nano Letters, vol. 11, no. 4, pp. 1676–1680, 2011.
[129]  J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, “Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas,” Applied Physics Letters, vol. 98, no. 10, Article ID 101109, 3 pages, 2011.
[130]  A. Andryieuski, R. Malureanu, G. Biagi, T. Holmgaard, and A. Lavrinenko, “Compact dipole nanoantenna coupler to plasmonic slot waveguide,” Optics Letters, vol. 37, no. 6, pp. 1124–1126, 2012.
[131]  A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Physical Review Letters, vol. 104, no. 21, Article ID 213902, 4 pages, 2010.
[132]  Z. Xiao, F. Luan, T.-Y. Liow, J. Zhang, and P. Shum, “Design for broadband high-efficiency grating couplers,” Optics Letters, vol. 37, no. 4, pp. 530–532, 2012.
[133]  D. Vermeulen, S. Selvaraja, P. Verheyen et al., “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-on-Insulator platform,” Optics Express, vol. 18, no. 17, pp. 18278–18283, 2010.
[134]  L. Zhu, V. Karagodsky, and C. Chang-Hasnain, “Novel high efficiency vertical to in-plane optical coupler,” in High Contrast Metastructures, vol. 8270 of Proceedings of SPIE, San Francisco, Calif, USA, 2012.
[135]  Z. Cheng, X. Chen, C. Y. Wong et al., “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Optics Letters, vol. 37, no. 7, pp. 1217–1219, 2012.
[136]  J. Andkj?r, S. Nishiwaki, T. Nomura, and O. Sigmund, “Topology optimization of grating couplers for the efficient excitation of surface plasmons,” Journal of the Optical Society of America B, vol. 27, no. 9, pp. 1828–1832, 2010.
[137]  M. W. Maqsood, R. Mehfuz, and K. J. Chau, “High-throughput diffraction-assisted surface-plasmon-polariton coupling by a super-wavelength slit,” Optics Express, vol. 18, no. 21, pp. 21669–21677, 2010.
[138]  E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Optics Express, vol. 16, no. 1, pp. 45–57, 2008.
[139]  X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Optics Letters, vol. 36, no. 6, pp. 796–798, 2011.
[140]  N. Talebi, M. Shahabadi, W. Khunsin, and R. Vogelgesang, “Plasmonic grating as a nonlinear converter-coupler,” Optics Express, vol. 20, no. 2, pp. 1392–1405, 2012.
[141]  I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nature Photonics, 2010.
[142]  A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Physical Review Letters, vol. 101, no. 4, Article ID 043901, 4 pages, 2008.
[143]  K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” Journal of Applied Physics, vol. 94, no. 7, Article ID 4632, 11 pages, 2003.
[144]  R. M. Bakker, A. Boltasseva, Z. Liu et al., “Near-field excitation of nanoantenna resonance,” Optics Express, vol. 15, no. 21, pp. 13682–13688, 2007.
[145]  L. Novotny, “Effective wavelength scaling for optical antennas,” Physical Review Letters, vol. 98, no. 26, Article ID 266802, 4 pages, 2007.
[146]  C. E. Talley, J. B. Jackson, C. Oubre et al., “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Letters, vol. 5, no. 8, pp. 1569–1574, 2005.
[147]  J. J. Greffet, “Nanoantennas for light emission,” Science, vol. 308, no. 5728, pp. 1561–1563, 2005.
[148]  M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photonics, vol. 3, no. 5, pp. 287–291, 2009.
[149]  J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials, vol. 9, no. 3, pp. 193–204, 2010.
[150]  L. Novotny and N. Van Hulst, “Antennas for light,” Nature Photonics, vol. 5, no. 2, pp. 83–90, 2011.
[151]  M. Klemm, “Novel directional nanoantennas for single-emitter sources and wireless nano-links,” International Journal of Optics, vol. 2012, Article ID 348306, 7 pages, 2012.
[152]  Q. H. Park, “Optical antennas and plasmonics,” Contemporary Physics, vol. 50, no. 2, pp. 407–423, 2009.
[153]  E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry-Pérot resonators for surface plasmons,” Applied Physics Letters, vol. 95, no. 20, Article ID 201101, 3 pages, 2009.
[154]  P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Applied physics: resonant optical antennas,” Science, vol. 308, no. 5728, pp. 1607–1609, 2005.
[155]  P. Biagioni and B. Hecht, “Nanoantennas for visible and infrared radiation,” Reports on Progress in Physics, vol. 57, no. 2, Article ID 024402, 2011.
[156]  C. Balanis, Antenna Theory: Analysis and Design, Wiley-Interscience, 3th edition, 2005.
[157]  A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell's equations,” Journal of Modern Optics, vol. 43, no. 4, pp. 773–793, 1996.
[158]  D. M. Shyroki, “Note on transformation to general curvilinear coordinates for Maxwell's curl equations (Is the magnetic field vector axial?),” http://arxiv.org/abs/physics/0307029v2.
[159]  U. Leonhardt and T. G. Philbin, “Chapter 2 transformation optics and the geometry of light,” Progress in Optics, vol. 53, pp. 69–152, 2009.
[160]  J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science, vol. 312, no. 5781, pp. 1780–1782, 2006.
[161]  J. Zhang, Y. Luo, and N. A. Mortensen, “Transmission of electromagnetic waves through sub-wavelength channels,” Optics Express, vol. 18, no. 4, pp. 3864–3870, 2010.
[162]  A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Optics Letters, vol. 33, no. 1, pp. 43–45, 2008.
[163]  E. E. Narimanov and A. V. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Applied Physics Letters, vol. 95, no. 4, Article ID 041106, 3 pages, 2009.
[164]  M. P. Bends?e and O. Sigmund, Topology Optimization: Theory, Methods, and Applications, Springer, 2003.
[165]  J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser and Photonics Reviews, vol. 5, no. 2, pp. 308–321, 2011.
[166]  M. Pu, L. Yang, L. H. Frandsen et al., “Topology-optimized slow-light couplers for ring-shaped photonic crystal waveguide,” in Proceedings of the Conference on Optical Fiber Communication, Collocated National Fiber Optic Engineers Conference (OFC/NFOEC '10), San Diego, Calif, USA, March 2010.
[167]  R. Salgueiro and Y. S. Kivshar, “Nonlinear couplers with tapered plasmonic waveguides,” Optics Express, vol. 20, no. 9, pp. 187–189, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413