全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Immunogenicity of Simulated PCECV Postexposure Booster Doses 1, 3, and 5 Years after 2-Dose and 3-Dose Primary Rabies Vaccination in Schoolchildren

DOI: 10.4061/2011/403201

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objectives. To assess the immunogenicity of intradermal (ID) booster doses of Purified Chick Embryo Cell rabies vaccine (PCECV, Rabipur) administered to Thai schoolchildren one, three and five years after a primary ID pre-exposure (PrEP) vaccination series. Methods. In this follow-up study of a randomized, open-label, phase II clinical trial, two simulated post-exposure booster doses of PCECV were administered on days 0 and 3 intradermally to 703 healthy schoolchildren, one, three or five years after primary vaccination with either two or three ID doses of 0.1?mL PCECV. Blood was drawn immediately before and 7, 14 and 365 days after the first booster dose to determine rabies virus neutralizing antibody (RVNA) concentrations. Results. An anamnestic response of approximately 30-fold increase in RVNA concentrations was demonstrated within 14 days after booster. All children (100%) developed adequate RVNA concentrations above 0.5?IU/mL. No vaccine related serious adverse events were seen in any of the vaccinees. Conclusion. ID rabies PrEP with PCECV is safe and immunogenic in schoolchildren and the anamnestic response to a two booster dose vaccination series was found to be adequate one, three, and five years after a two- or three-dose primary PrEP vaccination series. 1. Introduction Rabies post-exposure prophylaxis (PEP) after an exposure to a rabid animal has been demonstrated to be efficacious using tissue culture vaccines (TCV) including purified chick embryo cell vaccine (PCECV), administered either intramuscularly (IM) or intradermally (ID) [1, 2]. However, human rabies remains a significant health problem in countries of Asia and Africa, where more than 99% of the exposures come from rabies-infected dogs that inhabit rural and urban areas. The vast majority of the estimated 55,000 human deaths that occur worldwide every year occur on these two continents [3, 4], mainly due to lack of awareness that results in delayed, inadequate PEP, or even no PEP administered to patients exposed to rabid animals. A significant number of bite exposures and rabies cases occur in children under 15 years of age [5–8]. It has been reported that in Thailand by the age of 15 years approximately one-third of all children will have experienced a dog bite, indicating the potential risk for children to be exposed to a rabid animal [9]. While PEP clearly saves lives, human rabies cases, especially in children, continue to occur despite the availability of vaccines and biologicals. Almost all of these human rabies cases could have been prevented, and almost all occurred due to

References

[1]  T. Kamoltham, J. Singhsa, U. Promsaranee, P. Sonthon, P. Mathean, and W. Thinyounyong, “Elimination of human rabies in a canine endemic province in Thailand: five-year programme,” Bulletin of the World Health Organization, vol. 81, no. 5, pp. 375–381, 2003.
[2]  B. P. Quiambao, E. M. Dimaano, C. Ambas, R. Davis, A. Banzhoff, and C. Malerczyk, “Reducing the cost of post-exposure rabies prophylaxis: efficacy of 0.1 ml PCEC rabies vaccine administered intradermally using the Thai Red Cross post-exposure regimen in patients severely exposed to laboratory-confirmed rabid animals,” Vaccine, vol. 23, no. 14, pp. 1709–1714, 2005.
[3]  D. L. Knobel, S. Cleaveland, P. G. Coleman et al., “Re-evaluating the burden of rabies in Africa and Asia,” Bulletin of the World Health Organization, vol. 83, no. 5, pp. 360–368, 2005.
[4]  WHO, “WHO expert consultation on Rabies : first report,” Report No. 931, WHO, Geneva, Switzerland, 2004.
[5]  T. R. Eng, D. B. Fishbein, H. E. Talamante et al., “Urban epizootic of rabies in Mexico: epidemiology and impact of animal bite injuries,” Bulletin of the World Health Organization, vol. 71, no. 5, pp. 615–624, 1993.
[6]  P. Thongcharoen, C. Wasi, S. Sirikawin, P. Chaiprasithikul, and P. Puthavathana, “Rabies and post-exposure prophylaxis in Thai children,” Asian Pacific Journal of Allergy and Immunology, vol. 7, no. 1, pp. 41–46, 1989.
[7]  WHO, “WER 2001—Rabies Asia,” Weekly Epidemiological Record, vol. 76, no. 41, pp. 319–320, 2001.
[8]  H. Wilde, D. J. Briggs, F. X. Meslin, T. Hemachudha, and V. Sitprija, “Rabies update for travel medicine advisors,” Clinical Infectious Diseases, vol. 37, no. 1, pp. 96–100, 2003.
[9]  H. Wilde, S. Chutivongse, W. Tepsumethanon, P. Choomkasien, C. Polsuwan, and B. Lumbertdacha, “Rabies in Thailand: 1990,” Reviews of Infectious Diseases, vol. 13, no. 4, pp. 644–652, 1991.
[10]  A. Ambrozaitis, A. Lai?konis, L. Bal?iuniene, A. Banzhoff, and C. Malerczyk, “Rabies post-exposure prophylaxis vaccination with purified chick embryo cell vaccine (PCECV) and purified Vero cell rabies vaccine (PVRV) in a four-site intradermal schedule (4-0-2-0-1-1): an immunogenic, cost-effective and practical regimen,” Vaccine, vol. 24, no. 19, pp. 4116–4121, 2006.
[11]  D. J. Briggs, A. Banzhoff, U. Nicolay et al., “Antibody response of patients after postexposure rabies vaccination with small intradermal doses of purified chick embryo cell vaccine or purified Vero cell rabies vaccine,” Bulletin of the World Health Organization, vol. 78, no. 5, pp. 693–698, 2000.
[12]  S. N. Madhusudana, N. P Anand, and R. Shamsundar, “Economical multi-site intradermal regimen with purified chick embryo cell vaccine (Rabipur) prevents rabies in people bitten by confirmed rabid animals,” International Journal of Infectious Diseases, vol. 6, no. 3, pp. 210–214, 2002.
[13]  T. Kamoltham, W. Thinyounyong, P. Phongchamnaphai et al., “Pre-exposure rabies vaccination using purified chick embryo cell rabies vaccine intradermally is immunogenic and safe,” Journal of Pediatrics, vol. 151, no. 2, pp. 173–177, 2007.
[14]  P. Shanbag, N. Shah, M. Kulkarni et al., “Protecting Indian schoolchildren against rabies. Pre-exposure vaccination with purified chick embryo cell vaccine (PCECV) or purified verocell rabies vaccine (PVRV),” Human Vaccines, vol. 4, no. 5, pp. 365–369, 2008.
[15]  K. Pengsaa, K. Limkittikul, A. Sabchareon et al., “A three-year clinical study on immunogenicity, safety, and booster response of purified chick embryo cell rabies vaccine administered intramuscularly or intradermally to 12- to 18-month-old Thai children, concomitantly with Japanese encephalitis vaccine,” Pediatric Infectious Disease Journal, vol. 28, no. 4, pp. 335–337, 2009.
[16]  J. Lang, D. Q. Hoa, N. V. Gioi et al., “Immunogenicity and safety of low-dose intradermal rabies vaccination given during an expanded programme on immunization session in Vietnam: results of a comparative randomized trial,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 93, no. 2, pp. 208–213, 1999.
[17]  J. S. Smith, P. A. Yager, and G. M. Baer, “A rapid tissue culture test for determining rabies neutralizing antibody,” Monograph Series. World Health Organization, no. 23, pp. 354–357, 1973.
[18]  B. Dodet, “Report of the sixth AREB meeting, Manila, The Philippines, 10–12 November 2009,” Vaccine, vol. 28, no. 19, pp. 3265–3268, 2010.
[19]  P. Khawplod, H. Wilde, M. Benjavongkulchai, C. Sriaroon, and P. Chomchey, “Immunogenicity study of abbreviated rabies preexposure vaccination schedules,” Journal of Travel Medicine, vol. 14, no. 3, pp. 173–176, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413