全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ANN Current Controller Based on PI-Fuzzy Adaptive System for Shunt Power Active Filter

DOI: 10.1155/2012/237259

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper deals with the use of triphase shunt active filter which is able to compensate current harmonics, reactive power, and current unbalance produced by nonlinear loads. To perform the identification of disturbing currents, a very simple control method is introduced. It’s formed by a DC voltage regulator and a balance between the average power of load and the active power supplied by the grid. The output current of the voltage source inverter (VSI) must track the reference current. This is done by a neural controller based on a PI-Fuzzy adaptive system as reference corrector. Also to regulate the DC link capacitor voltage a fuzzy logic adaptive PI controller is used. 1. Introduction Due to the increased use of nonlinear electrical loads, such as power electronics supplies, harmonics currents are generated in the level of these loads and injected back to the grid causing its voltage distortion at harmonics currents’ frequencies. The distorted voltage generates distorted currents which will be absorbed by sensitive loads and causing losses in the lines. Also, the most consuming electrical power loads are almost inductive, and then they contribute to the degradation of grid power factor at the point of common connection (PCC). Conventionally, passive filters were adopted for the reduction of harmonics and to improve power factor; therefore, they have the disadvantages such as fixed frequency compensation, resonance, and large size. These limitations were avoided by the use of active filters which utilized a switch-mode power electronic converter to supply harmonic currents equal to those in the load currents. The main objective of the power active filter (PAF) is to compensate reactive power, current harmonics, neutral current, and unbalancing of nonlinear loads by injecting compensating currents. Almost, the method-based instantaneous active and reactive power (pq method) [1] is currently performed for disturbing current identification. The major disadvantages of a bloc identification-based pq method are essentially as follows:(i)it is not effective under distorted and unbalanced mains voltages conditions;(ii)the time delays introduced by pass filters, which are used to separate the average and oscillating parts of powers, degrades the dynamic performance of active filter;(iii) this method requires more computational calculation. The controller of the PAF is comprised of an inner current loop which actively shapes the line currents and an outer voltage control loop which regulates the magnitude of the line currents. This paper presents the

References

[1]  H. Akagi, Y. Kanazawa, and A. Nabae, “Instantaneous reactive power compensators comprising switching devices without energy storage components,” IEEE Transactions on Industry Applications, vol. IA-20, no. 3, pp. 625–630, 1984.
[2]  A. Jami and S. H. Hosseini, “Implementation of a novel control strategy for shunt active filter,” The ECTI Transactions on Electrical Engineering, Electronics, and Communications, vol. 4, no. 1, pp. 40–46, 2006.
[3]  H. Akagi, Y. Kanazawa, and A. Nabae, “Generalized theory of the instantaneous reactive power in three-phase circuits,” pp. 1375–1386, International Power Electronics Conference (IPEC '83), Tokyo, Japan, 1983.
[4]  A. Dell'Aquila and A. Lecci, “A current control for three-phase four-wire shunt active filters,” Automatika, vol. 44, no. 3-4, pp. 129–135, 2003.
[5]  Z. Y. Zhao, M. Tomizuka, and S. Isaka, “Fuzzy gain scheduling of PID controllers,” IEEE Transactions on Systems, Man and Cybernetics, vol. 23, no. 5, pp. 1392–1398, 1993.
[6]  P. Viljamaa, Fuzzy gain scheduling and tuning of multivariable fuzzy control methods of fuzzy computing in control systems [Ph.D. thesis], Temper University of Technology, 2000.
[7]  G. Dreyfus, J. Martinez, M. Samuelides et al., Réseaux De Neurons : Méthodologie Et Applications, Editions Eyrolles, 2002.
[8]  D. Ould Abdeslam, P. Wira, J. Mercklé, Y. A. Chapuis, and D. Flieller, “Stratégie neuromimétique d'identification et de commande d'un filtre actif parallèle,” , Revue Des Systèmes, vol. 9, no. 1, pp. 35–64, 2006.
[9]  M. Chakphed and P. Suttichai, “Active power filter for three-phase four-wire electric systems using neural networks,” Electric Power Systems Research, vol. 60, no. 3, pp. 179–192, 2002.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413