全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Anesthetic Routines: The Anesthesiologist's Role in GI Recovery and Postoperative Ileus

DOI: 10.4061/2011/976904

Full-Text   Cite this paper   Add to My Lib

Abstract:

All patients undergoing bowel resection experience postoperative ileus, a transient cessation of bowel motility that prevents effective transit of intestinal contents or tolerance of oral intake, to varying degrees. An anesthesiologist plays a critical role, not only in the initiation of surgical anesthesia, but also with the selection and transition to effective postoperative analgesia regimens. Attempts to reduce the duration of postoperative ileus have prompted the study of various preoperative, perioperative, and postoperative regimens to facilitate gastrointestinal recovery. These include modifiable variables such as epidural anesthesia and analgesia, opioid-sparing anesthesia and analgesia, fluid restriction, colloid versus crystalloid combinations, prokinetic drugs, and use of the new peripherally acting mu-opioid receptor (PAM-OR) antagonists. Review and appropriate adaptation of these multiple modifiable interventions by anesthesiologists and their surgical colleagues will facilitate implementation of a best-practice management routine for bowel resection procedures that will benefit the patient and the healthcare system. 1. Introduction An anesthesiologist plays a critical role not only in the initiation of surgical anesthesia but also in the selection and transition to an effective maintenance of postoperative analgesia. All patients undergoing bowel resection (BR) experience postoperative ileus (POI), a transient cessation of bowel motility that prevents effective transit of intestinal contents or tolerance of oral intake, to varying degrees [1–3]. Clinically, POI is characterized by delayed passage of flatus and stool, bloating, abdominal distension, abdominal pain, nausea, and vomiting and is associated with an increase in postoperative morbidity and length of hospital stay (LOS) [4]. Although the etiology of POI is complex (Figure 1), it is primarily associated with the surgical stress response, an acute inflammatory response associated with manipulation of the bowel, and endogenous opioids secreted within the gastrointestinal (GI) tract in response to surgical trauma [3–7]. Opioid-based analgesia is widely used and considered the standard of care for postoperative pain management [8–12]. Opioids mediate analgesia by binding to mu-opioid receptors in the central nervous system [13]; however, they also bind to peripheral mu-opioid receptors in the GI tract resulting in a disruption of the migrating motor complex and propulsive motor activity associated with GI motility, inhibition of intestinal ion and fluid secretion, and an increase in

References

[1]  C. P. Delaney, “Clinical perspective on postoperative ileus and the effect of opiates,” Neurogastroenterology and Motility, vol. 16, no. 2, pp. 61–66, 2004.
[2]  E. H. Livingston and E. P. Passaro, “Postoperative ileus,” Digestive Diseases and Sciences, vol. 35, no. 1, pp. 121–132, 1990.
[3]  G. E. Boeckxstaens and W. J. de Jonge, “Neuroimmune mechanisms in postoperative ileus,” Gut, vol. 58, no. 9, pp. 1300–1311, 2009.
[4]  H. Kehlet and K. Holte, “Review of postoperative ileus,” American Journal of Surgery, vol. 182, no. 5, pp. 3S–10S, 2001.
[5]  J. C. Kalff, W. H. Schraut, R. L. Simmons, and A. J. Bauer, “Surgical manipulation of the gut elicits an intestinal muscularis inflammatory response resulting in postsurgical ileus,” Annals of Surgery, vol. 228, no. 5, pp. 652–663, 1998.
[6]  J. B. Leslie, “Alvimopan for the management of postoperative ileus,” Annals of Pharmacotherapy, vol. 39, no. 9, pp. 1502–1510, 2005.
[7]  O. Lundgren, “Sympathetic input into the enteric nervous system,” Gut, vol. 47, no. 4, pp. iv33–iv35, 2000.
[8]  K. Holte and H. Kehlet, “Postoperative ileus: a preventable event,” British Journal of Surgery, vol. 87, no. 11, pp. 1480–1493, 2000.
[9]  A. Kurz and D. I. Sessler, “Opioid-induced bowel dysfunction: pathophysiology and potential new therapies,” Drugs, vol. 63, no. 7, pp. 649–671, 2003.
[10]  S. Liu, R. L. Carpenter, and J. M. Neal, “Epidural anesthesia and analgesia: their role in postoperative outcome,” Anesthesiology, vol. 82, no. 6, pp. 1474–1506, 1995.
[11]  R. J. Moraca, D. G. Sheldon, and R. C. Thirlby, “The role of epidural anesthesia and analgesia in surgical practice,” Annals of Surgery, vol. 238, no. 5, pp. 663–673, 2003.
[12]  R. A. Steinbrook, “Epidural anesthesia and gastrointestinal motility,” Anesthesia and Analgesia, vol. 86, no. 4, pp. 837–844, 1998.
[13]  P. Holzer, “Opioids and opioid receptors in the enteric nervous system: from a problem in opioid analgesia to a possible new prokinetic therapy in humans,” Neuroscience Letters, vol. 361, no. 1–3, pp. 192–195, 2004.
[14]  B. Scheinin, R. Asantila, and R. Orko, “The effect of bupivacaine and morphine on pain and bowel function after colonic surgery,” Acta Anaesthesiologica Scandinavica, vol. 31, no. 2, pp. 161–164, 1987.
[15]  H. Ahn, A. Bronge, K. Johansson, H. Ygge, and J. Lindhagen, “Effect of continuous postoperative epidural analgesia on intestinal motility,” British Journal of Surgery, vol. 75, no. 12, pp. 1176–1178, 1988.
[16]  T. Thoren, A. Sundberg, M. Wattwil, J. E. Garvill, and U. Jurgensen, “Effects of epidural bupivacaine and epidural morphine on bowel function and pain after hysterectomy,” Acta Anaesthesiologica Scandinavica, vol. 33, no. 2, pp. 181–185, 1989.
[17]  S. S. Liu, R. L. Carpenter, D. C. Mackey et al., “Effects of perioperative analgesic technique on rate of recovery after colon surgery,” Anesthesiology, vol. 83, no. 4, pp. 757–765, 1995.
[18]  K. Holte and H. Kehlet, “Epidural anaesthesia and analgesia—effects on surgical stress responses and implications for postoperative nutrition,” Clinical Nutrition, vol. 21, no. 3, pp. 199–206, 2002.
[19]  R. Asantila, P. Eklund, and P. H. Rosenberg, “Continuous epidural infusion of bupivacaine and morphine for postoperative analgesia after hysterectomy,” Acta Anaesthesiologica Scandinavica, vol. 35, no. 6, pp. 513–517, 1991.
[20]  H. J?rgensen, J. S. Fomsgaard, J. Dirks, J. Wetterslev, B. Andreasson, and J. B. Dahl, “Effect of epidural bupivacaine vs combined epidural bupivacaine and morphine on gastrointestinal function and pain after major gynaecological surgery,” British Journal of Anaesthesia, vol. 87, no. 5, pp. 727–732, 2001.
[21]  M. Zutshi, C. P. Delaney, A. J. Senagore et al., “Randomized controlled trial comparing the controlled rehabilitation with early ambulation and diet pathway versus the controlled rehabilitation with early ambulation and diet with preemptive epidural anesthesia/analgesia after laparotomy and intestinal resection,” American Journal of Surgery, vol. 189, no. 3, pp. 268–272, 2005.
[22]  N. Elia, C. Lysakowski, and M. R. Tramèr, “Does multimodal analgesia with acetaminophen, nonsteroidal antiinflammatory drugs, or selective cyclooxygenase-2 inhibitors and patient-controlled analgesia morphine offer advantages over morphine alone? Meta-analyses of randomized trials,” Anesthesiology, vol. 103, no. 6, pp. 1296–1304, 2005.
[23]  T. P. Malan, G. Marsh, S. I. Hakki, E. Grossman, L. Traylor, and R. C. Hubbard, “Parecoxib sodium, a parenteral cyclooxygenase 2 selective inhibitor, improves morphine analgesia and is opioid-sparing following total hip arthroplasty,” Anesthesiology, vol. 98, no. 4, pp. 950–956, 2003.
[24]  J. Y. Chen, G. J. Wu, M. S. Mok et al., “Effect of adding ketorolac to intravenous morphine patient-controlled analgesia on bowel function in colorectal surgery patients—a prospective, randomized, double-blind study,” Acta Anaesthesiologica Scandinavica, vol. 49, no. 4, pp. 546–551, 2005.
[25]  J. Y. Chen, T. L. Ko, Y. R. Wen et al., “Opioid-sparing effects of ketorolac and its correlation with the recovery of postoperative bowel function in colorectal surgery patients: a prospective randomized double-blinded study,” Clinical Journal of Pain, vol. 25, no. 6, pp. 485–489, 2009.
[26]  E. Marret, M. Rolin, M. Beaussier, and F. Bonnet, “Meta-analysis of intravenous lidocaine and postoperative recovery after abdominal surgery,” British Journal of Surgery, vol. 95, no. 11, pp. 1331–1338, 2008.
[27]  G. Dierking, T. H. Duedahl, M. L. Rasmussen et al., “Effects of gabapentin on postoperative morphine consumption and pain after abdominal hysterectomy: a randomized, double-blind trial,” Acta Anaesthesiologica Scandinavica, vol. 48, no. 3, pp. 322–327, 2004.
[28]  A. Turan, B. Karamanlio?lu, D. Memi?, P. Usar, Z. Pamuk?u, and M. Türe, “The analgesic effects of gabapentin after total abdominal hysterectomy,” Anesthesia and Analgesia, vol. 98, no. 5, pp. 1370–1373, 2004.
[29]  C. K. Pandey, S. Priye, S. Singh, U. Singh, R. B. Singh, and P. K. Singh, “Preemptive use of gabapentin significantly decreases postoperative pain and rescue analgesic requirements in laparoscopic cholecystectomy,” Canadian Journal of Anesthesia, vol. 51, no. 4, pp. 358–363, 2004.
[30]  Nucynta (Tapentadol) Prescribing Information, Pricara, Division of Ortho-McNeil-Janssen Pharmaceuticals, Inc., Raritan, NJ, USA, 2010.
[31]  T. M. Tzschentke, T. Christoph, B. K?gel et al., “(-)-(1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol hydrochloride (Tapentadol HCl): a novel μ-opioid receptor agonist/norepinephrine reuptake inhibitor with broad-spectrum analgesic properties,” Journal of Pharmacology and Experimental Therapeutics, vol. 323, no. 1, pp. 265–276, 2007.
[32]  T. M. Tzschentke, J. De Vry, R. Terlinden et al., “Tapentadol hydrochloride: analgesic mu-opioid receptor agonist noradrenaline reuptake inhibitor,” Drugs of the Future, vol. 31, no. 12, pp. 1053–1061, 2006.
[33]  S. Daniels, E. Casson, J. U. Stegmann et al., “A randomized, double-blind, placebo-controlled phase 3 study of the relative efficacy and tolerability of tapentadol IR and oxycodone IR for acute pain,” Current Medical Research and Opinion, vol. 25, no. 6, pp. 1551–1561, 2009.
[34]  A. J. Ogilvy and G. Smith, “The gastrointestinal tract after anaesthesia,” European Journal of Anaesthesiology, Supplement, vol. 12, no. 10, pp. 35–42, 1995.
[35]  H. Kehlet and J. B. Dahl, “Anaesthesia, surgery, and challenges in postoperative recovery,” The Lancet, vol. 362, no. 9399, pp. 1921–1928, 2003.
[36]  G. Wallin, J. Cassuto, and S. Hogstrom, “Failure of epidural anesthesia to prevent postoperative paralytic ileus,” Anesthesiology, vol. 65, no. 3, pp. 292–297, 1986.
[37]  J. Neudecker, W. Schwenk, T. Junghans, S. Pietsch, B. B?hm, and J. M. Müller, “Randomized controlled trial to examine the influence of thoracic epidural analgesia on postoperative ileus after laparoscopic sigmoid resection,” British Journal of Surgery, vol. 86, no. 10, pp. 1292–1295, 1999.
[38]  H. Bisgaard, H. Gronborg, N. Mygind, R. Dahl, N. Lindqvist, and P. Venge, “Allergen-induced increase of eosinophil cationic protein in nasal lavage fluid: effect of the glucocorticoid budesonide,” Journal of Allergy and Clinical Immunology, vol. 85, no. 5, pp. 891–895, 1990.
[39]  B. Brandstrup, “Fluid therapy for the surgical patient,” Best Practice and Research: Clinical Anaesthesiology, vol. 20, no. 2, pp. 265–283, 2006.
[40]  K. Holte, N. E. Sharrock, and H. Kehlet, “Pathophysiology and clinical implications of perioperative fluid excess,” British Journal of Anaesthesia, vol. 89, no. 4, pp. 622–632, 2002.
[41]  D. N. Lobo, K. A. Bostock, K. R. Neal, A. C. Perkins, B. J. Rowlands, and S. P. Allison, “Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial,” The Lancet, vol. 359, no. 9320, pp. 1812–1818, 2002.
[42]  V. Nisanevich, I. Felsenstein, G. Almogy, C. Weissman, S. Einav, and I. Matot, “Effect of intraoperative fluid management on outcome after intraabdominal surgery,” Anesthesiology, vol. 103, no. 1, pp. 25–32, 2005.
[43]  T. Prien, N. Backhaus, F. Pelster, W. Pircher, H. Bunte, and P. Lawin, “Effect of intraoperative fluid administration and colloid osmotic pressure on the formation of intestinal edema during gastrointestinal surgery,” Journal of Clinical Anesthesia, vol. 2, no. 5, pp. 317–323, 1990.
[44]  S. Uenoyama, T. Kobayashi, Y. Takeuchi, K. Yamashita, Y. Koide, and T. Kazui, “Improvement of intestinal motility using S-methylisothiourea in postoperative ileus,” American Journal of Surgery, vol. 187, no. 1, pp. 93–97, 2004.
[45]  J. J. Gallican and S. Vanner, “Basic and clinical pharmacology of new motility promoting agents,” Neurogastroenterology and Motility, vol. 17, no. 5, pp. 643–653, 2005.
[46]  T. J. Bungard and P. B. Kale-Pradhan, “Prokinetic agents for the treatment of postoperative ileus in adults: a review of the literature,” Pharmacotherapy, vol. 19, no. 4, pp. 416–423, 1999.
[47]  M. E. Kreis, M. Kasparek, T. T. Zittel, H. D. Becker, and E. C. Jehle, “Neostigmine increases postoperative colonic motility in patients undergoing colorectal surgery,” Surgery, vol. 130, no. 3, pp. 449–456, 2001.
[48]  K. Nakada, A. Ikoma, T. Suzuki et al., “Amelioration of intestinal dysmotility and stasis by octreotide early after small-bowel autotransplantation in dogs,” American Journal of Surgery, vol. 169, no. 3, pp. 294–299, 1995.
[49]  J. J. Cullen, J. C. Eagon, and K. A. Kelly, “Gastrointestinal peptide hormones during postoperative ileus. Effect of octreotide,” Digestive Diseases and Sciences, vol. 39, no. 6, pp. 1179–1184, 1994.
[50]  K. Holte and H. Kehlet, “Postoperative ileus: progress towards effective management,” Drugs, vol. 62, no. 18, pp. 2603–2615, 2002.
[51]  M. D. Gershon, “Serotonin receptors and transporters—roles in normal and abnormal gastrointestinal motility,” Alimentary Pharmacology and Therapeutics, vol. 20, no. 7, pp. 3–14, 2004.
[52]  F. Potet, T. Bouyssou, D. Escande, and I. Baró, “Gastrointestinal prokinetic drugs have different affinity for the human cardiac human ether-à-gogo K channel,” Journal of Pharmacology and Experimental Therapeutics, vol. 299, no. 3, pp. 1007–1012, 2001.
[53]  M. Tonini, F. De Ponti, A. Di Nucci, and F. Crema, “Cardiac adverse effects of gastrointestinal prokinetics,” Alimentary Pharmacology and Therapeutics, vol. 13, no. 12, pp. 1585–1591, 1999.
[54]  D. J. Roberts, H. L. Banh, and R. I. Hall, “Use of novel prokinetic agents to facilitate return of gastrointestinal motility in adult critically ill patients,” Current Opinion in Critical Care, vol. 12, no. 4, pp. 295–302, 2006.
[55]  J. Tack, J. Janssens, G. Vantrappen et al., “Effect of erythromycin on gastric motility in controls and in diabetic gastroparesis,” Gastroenterology, vol. 103, no. 1, pp. 72–79, 1992.
[56]  T. L. Peeters, “Erythromycin and other macrolides as prokinetic agents,” Gastroenterology, vol. 105, no. 6, pp. 1886–1899, 1993.
[57]  Z. Itoh, “Motilin and clinical application,” Peptides, vol. 18, no. 4, pp. 593–608, 1997.
[58]  M. Bonacini, S. Quiason, M. Reynolds, M. Gaddis, B. Pemberton, and O. Smith, “Effect of intravenous erythromycin on postoperative ileus,” American Journal of Gastroenterology, vol. 88, no. 2, pp. 208–211, 1993.
[59]  A. J. Smith, A. Nissan, N. M. Lanouette et al., “Prokinetic effect of erythromycin after colorectal surgery: randomized, placebo-controlled, double-blind study,” Diseases of the Colon and Rectum, vol. 43, no. 3, pp. 333–337, 2000.
[60]  S. Jepsen, A. Klaerke, P. H. Nielsen, and O. Simonsen, “Negative effect of metoclopramide in postoperative adynamic ileus. A prospective, randomized, double blind study,” British Journal of Surgery, vol. 73, no. 4, pp. 290–291, 1986.
[61]  E. D. Davidson, T. Hersh, and R. A. Brinner, “The effects of metoclopramide on postoperative ileus. A randomized double-blind study,” Annals of Surgery, vol. 190, no. 1, pp. 27–30, 1979.
[62]  J. D. Cheape, S. D. Wexner, K. James, and D. G. Jagelman, “Does metoclopramide reduce the length of ileus after colorectal surgery? A prospective randomized trial,” Diseases of the Colon and Rectum, vol. 34, no. 6, pp. 437–441, 1991.
[63]  A. J. Bauer and G. E. Boeckxstaens, “Mechanisms of postoperative ileus,” Neurogastroenterology and Motility, vol. 16, no. 2, pp. 54–60, 2004.
[64]  R. L. Cali, P. G. Meade, M. S. Swanson, and C. Freeman, “Effect of morphine and incision length on bowel function after colectomy,” Diseases of the Colon and Rectum, vol. 43, no. 2, pp. 163–168, 2000.
[65]  S. Carter, “The surgical team and outcomes management: focus on postoperative ileus,” Journal of Perianesthesia Nursing, vol. 21, no. 2, pp. S2–S6, 2006.
[66]  H. Fukuda, D. Tsuchida, K. Koda, M. Miyazaki, T. N. Pappas, and T. Takahashi, “Impaired gastric motor activity after abdominal surgery in rats,” Neurogastroenterology and Motility, vol. 17, no. 2, pp. 245–250, 2005.
[67]  S. Yoshida, J. Ohta, K. Yamasaki et al., “Effect of surgical stress on endogenous morphine and cytokine levels in the plasma after laparoscopoic or open cholecystectomy,” Surgical Endoscopy, vol. 14, no. 2, pp. 137–140, 2000.
[68]  M. L. Austrup and G. Korean, “Analgesic agents for the postoperative period: opioids,” Surgical Clinics of North America, vol. 79, no. 2, pp. 253–273, 1999.
[69]  S. S. Liu, P. S. Hodgson, R. L. Carpenter, and J. R. Fricke, “ADL 8-2698, a trans-3,4-dimethyl-4-(3-hydroxyphenyl) piperidine, prevents gastrointestinal effects of intravenous morphine without affecting analgesia,” Clinical Pharmacology and Therapeutics, vol. 69, no. 1, pp. 66–71, 2001.
[70]  C. S. Yuan, J. F. Foss, M. O'Connor et al., “Effects of enteric-coated methylnaltrexone in preventing opioid-induced delay in oral-cecal transit time,” Clinical Pharmacology and Therapeutics, vol. 67, no. 4, pp. 398–404, 2000.
[71]  C. S. Yuan and J. F. Foss, “Antagonism of gastrointestinal opioid effects,” Regional Anesthesia and Pain Medicine, vol. 25, no. 6, pp. 639–642, 2000.
[72]  C. P. Delaney, J. L. Weese, N. H. Hyman et al., “Phase III trial of alvimopan, a novel, peripherally acting, mu opioid antagonist, for postoperative ileus after major abdominal surgery,” Diseases of the Colon and Rectum, vol. 48, no. 6, pp. 1114–1129, 2005.
[73]  E. R. Viscusi, J. Rathmell, A. Fichera, et al., “A double-blind, randomized, placebo-controlled trial of methylnaltrexone (MNTX) for post-operative bowel dysfunction in segmental colectomy patients,” Anesthesiology, vol. 103: abstract A893, 2005.
[74]  B. G. Wolff, F. Michelassi, T. M. Gerkin et al., “Alvimopan, a novel, peripherally acting μ opioid antagonist: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial of major abdominal surgery and postoperative ileus,” Annals of Surgery, vol. 240, no. 4, pp. 728–735, 2004.
[75]  E. R. Viscusi, T. J. Gan, J. B. Leslie et al., “Peripherally acting mu-opioid receptor antagonists and postoperative ileus: mechanisms of action and clinical applicability,” Anesthesia and Analgesia, vol. 108, no. 6, pp. 1811–1822, 2009.
[76]  M. W. Büchler, C. M. Seiler, J. R. Monson et al., “Clinical trial: alvimopan for the management of post-operative ileus after abdominal surgery: results of an international randomized, double-blind, multicentre, placebo-controlled clinical study,” Alimentary Pharmacology and Therapeutics, vol. 28, no. 3, pp. 312–325, 2008.
[77]  K. Ludwig, W. E. Enker, C. P. Delaney et al., “Gastrointestinal tract recovery in patients undergoing bowel resection: results of a randomized trial of alvimopan and placebo with a standardized accelerated postoperative care pathway,” Archives of Surgery, vol. 143, no. 11, pp. 1098–1105, 2008.
[78]  E. R. Viscusi, S. Goldstein, T. Witkowski et al., “Alvimopan, a peripherally acting mu-opioid receptor antagonist, compared with placebo in postoperative ileus after major abdominal surgery: results of a randomized, double-blind, controlled study,” Surgical Endoscopy and Other Interventional Techniques, vol. 20, no. 1, pp. 64–70, 2006.
[79]  E. R. Viscusi, S. Goldstein, T. Witkowski et al., “Erratum: Alvimopan, a perpherally acting mu-opioid receptor antagonist, compared with placebo in postoperative ileus after major abdominal surgery: results of a randomized, double-blind, controlled study,” Surgical Endoscopy and Other Interventional Techniques, vol. 20, no. 3, p. 537, 2006.
[80]  C. S. Yuan and J. F. Foss, “Oral methylnaltrexone for opioid-induced constipation,” Journal of the American Medical Association, vol. 284, no. 11, pp. 1383–1384, 2000.
[81]  J. Stephenson, “Methylnaltrexone reverses opioid-induced constipation,” The Lancet Oncology, vol. 3, no. 4, p. 202, 2002.
[82]  “Wyeth and Progenics provide update on phase 3 clinical trial of intravenous methylnaltrexone for postoperative ileus [press release],” Collegeville, Pa and Tarrytown, NY; March 2008, http://www.progenics.com/releasedetail.cfm?releaseid=298721.
[83]  Entereg (alvimopan) Capsules Prescribing Information, Adolor Corporation, Exton, Pa, USA, 2009.
[84]  B. G. Wolff, J. L. Weese, K. A. Ludwig et al., “Postoperative ileus-related morbidity profile in patients treated with alvimopan after bowel resection,” Journal of the American College of Surgeons, vol. 204, no. 4, pp. 609–616, 2007.
[85]  T. J. Bell, S. A. Poston, M. D. Kraft, A. J. Senagore, C. P. Delaney, and L. Techner, “Economic analysis of alvimopan in North American phase III efficacy trials,” American Journal of Health-System Pharmacy, vol. 66, no. 15, pp. 1362–1368, 2009.
[86]  L. Basse, D. H. Jakobsen, P. Billesb?lle, M. Werner, and H. Kehlet, “A clinical pathway to accelerate recovery after colonic resection,” Annals of Surgery, vol. 232, no. 1, pp. 51–57, 2000.
[87]  W. Raue, O. Haase, T. Junghans, M. Scharfenberg, J. M. Müller, and W. Schwenk, “"Fast-track" multimodal rehabilitation program improves outcome after laparoscopic sigmoidectomy: a controlled prospective evaluation,” Surgical Endoscopy and Other Interventional Techniques, vol. 18, no. 10, pp. 1463–1468, 2004.
[88]  C. P. Delaney, V. W. Fazio, A. J. Senagore, B. Robinson, A. L. Halverson, and F. H. Remzi, “'Fast track' postoperative management protocol for patients with high co-morbidity undergoing complex abdominal and pelvic colorectal surgery,” British Journal of Surgery, vol. 88, no. 11, pp. 1533–1538, 2001.
[89]  L. Basse, J. E. Thorb?l, K. L?ssl, H. Kehlet, and A. Senagore, “Colonic surgery with accelerated rehabilitation or conventional care,” Diseases of the Colon and Rectum, vol. 47, no. 3, pp. 271–278, 2004.
[90]  D. Hjort Jakobsen, E. Sonne, L. Basse, T. Bisgaard, and H. Kehlet, “Convalescence after colonic resection with fast-track versus conventional care,” Scandinavian Journal of Surgery, vol. 93, no. 1, pp. 24–28, 2004.
[91]  H. Kehlet, “Fast-track colonic surgery: status and perspectives,” Recent Results in Cancer Research, vol. 165, pp. 8–13, 2005.
[92]  T. Asao, H. Kuwano, J. I. Nakamura, N. Morinaga, I. Hirayama, and M. Ide, “Gum chewing enhances early recovery from postoperative ileus after laparoscopic colectomy,” Journal of the American College of Surgeons, vol. 195, no. 1, pp. 30–32, 2002.
[93]  E. J. Kouba, E. M. Wallen, and R. S. Pruthi, “Gum chewing stimulates bowel motility in patients undergoing radical cystectomy with urinary diversion,” Urology, vol. 70, no. 6, pp. 1053–1056, 2007.
[94]  R. Schuster, N. Grewal, G. C. Greaney, and K. Waxman, “Gum chewing reduces ileus after elective open sigmoid colectomy,” Archives of Surgery, vol. 141, no. 2, pp. 174–176, 2006.
[95]  Y. C. Yeh, E. V. Klinger, and P. Reddy, “Pharmacologic options to prevent postoperative ileus,” Annals of Pharmacotherapy, vol. 43, no. 9, pp. 1474–1485, 2009.
[96]  E. Matros, F. Rocha, M. Zinner et al., “Does gum chewing ameliorate postoperative ileus? Results of a prospective, randomized, placebo-controlled trial,” Journal of the American College of Surgeons, vol. 202, no. 5, pp. 773–778, 2006.
[97]  J. Fanning and S. Yu-Brekke, “Prospective trial of aggressive postoperative bowel stimulation following radical hysterectomy,” Gynecologic Oncology, vol. 73, no. 3, pp. 412–414, 1999.
[98]  K. Kraus and J. Fanning, “Prospective trial of early feeding and bowel stimulation after radical hysterectomy,” American Journal of Obstetrics and Gynecology, vol. 182, no. 5, pp. 996–998, 2000.
[99]  L. Basse, J. L. Madsen, and H. Kehlet, “Normal gastrointestinal transit after colonic resection using epidural analgesia, enforced oral nutrition and laxative,” British Journal of Surgery, vol. 88, no. 11, pp. 1498–1500, 2001.
[100]  B. Person and S. D. Wexner, “The management of postoperative ileus,” Current Problems in Surgery, vol. 43, no. 1, pp. 12–65, 2006.
[101]  M. Camilleri, “Alvimopan, a selective peripherally acting μ-opioid antagonist,” Neurogastroenterology and Motility, vol. 17, no. 2, pp. 157–165, 2005.
[102]  N. M. H. Bulow, N. V. Barbosa, and J. B. T. Rocha, “Opioid consumption in total intravenous anesthesia is reduced with dexmedetomidine: a comparative study with remifentanil in gynecologic videolaparoscopic surgery,” Journal of Clinical Anesthesia, vol. 19, no. 4, pp. 280–285, 2007.
[103]  S. Chaudhri, L. Brown, I. Hassan, and A. F. Horgan, “Preoperative intensive, community-based vs. traditional stoma education: a randomized, controlled trial,” Diseases of the Colon and Rectum, vol. 48, no. 3, pp. 504–509, 2005.
[104]  M. I. Correia and R. G. Da Silva, “The impact of early nutrition on metabolic response and postoperative ileus,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 7, no. 5, pp. 577–583, 2004.
[105]  J. B. Dahl, O. Mathiesen, and H. Kehlet, “An expert opinion on postoperative pain management, with special reference to new developments,” Expert Opinion on Pharmacotherapy, vol. 11, no. 15, pp. 2459–2470, 2010.
[106]  H. Kehlet and D. W. Wilmore, “Multimodal strategies to improve surgical outcome,” American Journal of Surgery, vol. 183, no. 6, pp. 630–641, 2002.
[107]  K. Lassen, M. Soop, J. Nygren et al., “Consensus review of optimal perioperative care in colorectal surgery: enhanced recovery after surgery (ERAS) group recommendations,” Archives of Surgery, vol. 144, no. 10, pp. 961–969, 2009.
[108]  V. Mehta and R. M. Langford, “Acute pain management for opioid dependent patients,” Anaesthesia, vol. 61, no. 3, pp. 269–276, 2006.
[109]  R. Nelson, B. Tse, and S. Edwards, “Systematic review of prophylactic nasogastric decompression after abdominal operations,” British Journal of Surgery, vol. 92, no. 6, pp. 673–680, 2005.
[110]  J. R. Pisegna and R. G. Martindale, “Acid suppression in the perioperative period,” Journal of Clinical Gastroenterology, vol. 39, no. 1, pp. 10–16, 2005.
[111]  J. R?msing and S. M?iniche, “A systematic review of COX-2 inhibitors compared with traditional NSAIDs, or different COX-2 inhibitors for post-operative pain,” Acta Anaesthesiologica Scandinavica, vol. 48, no. 5, pp. 525–546, 2004.
[112]  P. E. Sánchez-Rodríguez, C. Fuentes-Orozco, and A. González-Ojeda, “Effect of dexamethasone on postoperative symptoms in patients undergoing elective laparoscopic cholecystectomy: randomized clinical trial,” World Journal of Surgery, pp. 34–5, 2010.
[113]  J. J. Tjandra and M. K. Y. Chan, “Systematic review on the short-term outcome of laparoscopic resection for colon and rectosigmoid cancer,” Colorectal Disease, vol. 8, no. 5, pp. 375–388, 2006.
[114]  U. Zingg, D. Miskovic, I. Pasternak, P. Meyer, C. T. Hamel, and U. Metzger, “Effect of bisacodyl on postoperative bowel motility in elective colorectal surgery: a prospective, randomized trial,” International Journal of Colorectal Disease, vol. 23, no. 12, pp. 1175–1183, 2008.
[115]  S. B. Groudine, H. A. G. Fisher, R. P. Kaufman et al., “Intravenous lidocaine speeds the return of bowel function, decreases postoperative pain, and shortens hospital stay in patients undergoing radical retropubic prostatectomy,” Anesthesia and Analgesia, vol. 86, no. 2, pp. 235–239, 1998.
[116]  S. S. Chang, R. G. Baumgartner, N. Wells, M. S. Cookson, and J. A. Smith Jr., “Causes of increased hospital stay after radical cystectomy in a clinical pathway setting,” Journal of Urology, vol. 167, no. 1, pp. 208–211, 2002.
[117]  B. W. Miedema and J. O. Johnson, “Methods for decreasing postoperative gut dysmotility,” The Lancet Oncology, vol. 4, no. 6, pp. 365–372, 2003.
[118]  D. J. Schoetz, M. Bockler, M. S. Rosenblatt et al., ““Ideal” length of stay after colectomy: whose ideal?” Diseases of the Colon and Rectum, vol. 40, no. 7, pp. 806–810, 1997.
[119]  E. L. Bokey, P. H. Chapuis, C. Fung et al., “Postoperative morbidity and mortality following resection of the colon and rectum for cancer,” Diseases of the Colon and Rectum, vol. 38, no. 5, pp. 480–487, 1995.
[120]  T. A. Pritts, M. S. Nussbaum, L. V. Flesch, E. J. Fegelman, A. A. Parikh, and J. E. Fischer, “Implementation of a clinical pathway decreases length of stay and cost for bowel resection,” Annals of Surgery, vol. 230, no. 5, pp. 728–733, 1999.
[121]  T. J. Gan, D. A. Lubarsky, E. M. Flood et al., “Patient preferences for acute pain treatment,” British Journal of Anaesthesia, vol. 92, no. 5, pp. 681–688, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133