Blindness is a state of lacking the visual perception due to physiological or neurological factors. The partial blindness represents the lack of integration in the growth of the optic nerve or visual centre of the eye, and total blindness is the full absence of the visual light perception. In this work, a simple, cheap, friendly user, smart blind guidance system is designed and implemented to improve the mobility of both blind and visually impaired people in a specific area. The proposed work includes a wearable equipment consists of head hat and mini hand stick to help the blind person to navigate alone safely and to avoid any obstacles that may be encountered, whether fixed or mobile, to prevent any possible accident. The main component of this system is the infrared sensor which is used to scan a predetermined area around blind by emitting-reflecting waves. The reflected signals received from the barrier objects are used as inputs to PIC microcontroller. The microcontroller is then used to determine the direction and distance of the objects around the blind. It also controls the peripheral components that alert the user about obstacle's shape, material, and direction. The implemented system is cheap, fast, and easy to use and an innovative affordable solution to blind and visually impaired people in third world countries. 1. Introduction Many people suffer from serious visual impairments preventing them from travelling independently. Accordingly, they need to use a wide range of tools and techniques to help them in their mobility. One of these techniques is orientation and mobility specialist who helps the visually impaired and blind people and trains them to move on their own independently and safely depending on their other remaining senses. Another method is the guide dogs which are trained specially to help the blind people on their movement by navigating around the obstacles to alert the person to change his/her way. However, this method has some limitations such as difficulty to understand the complex direction by these dogs, and they are only suitable for about five years. The cost of these trained dogs is very expensive, also it is difficult for many of blind and visually impaired persons to provide the necessary care for another living being. There is an international symbol tool of blind and visually impaired people just like the white cane with a red tip which is used to enhance the blind movement. Nowadays, different types of these canes have been used such as the white cane [1], the smart cane [2], and the laser cane [3]. However, this
References
[1]
D. Yuan and R. Manduchi, “Dynamic environment exploration using a Virtual White Cane,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), pp. 243–249, IEEE, San Diego, Calif, USA, June 2005.
[2]
A. A. Tahat, “A wireless ranging system for the blind long-cane utilizing a smart-phone,” in Proceedings of the 10th International Conference on Telecommunications (ConTEL '09), pp. 111–117, IEEE, Zagreb, Croatia, June 2009.
[3]
D. Bolgiano and E. Meeks Jr., “A laser cane for the blind,” IEEE Journal of Quantum Electronics, vol. 3, no. 6, p. 268, 1967.
[4]
S. Shoval, I. Ulrich, and J. Borenstein, “NavBelt and the guide-cane [obstacle-avoidance systems for the blind and visually impaired],” IEEE Robotics and Automation Magazine, vol. 10, no. 1, pp. 9–20, 2003.
[5]
S. Shoval, J. Borenstein, and Y. Koren, “Auditory guidance with the navbelt-a computerized travel aid for the blind,” IEEE Transactions on Systems, Man and Cybernetics C, vol. 28, no. 3, pp. 459–467, 1998.
[6]
S. Ram and J. Sharf, “The people sensor: a mobility aid for the visually impaired,” in Proceedings of the 1998 Digest of Papers 2nd International Symposium on Wearable Computers, pp. 166–167, IEEE, October 1998.
[7]
E. Milios, B. Kapralos, A. Kopinska, and S. Stergiopoulos, “Sonification of range information for 3-D space perception,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 4, pp. 416–421, 2003.
[8]
K. Magatani, K. Sawa, and K. Yanashima, “Development of the navigation system for the visually impaired by using optical beacons,” in Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1488–1490, IEEE, October 2001.
[9]
P. B. L. Meijer, “An experimental system for auditory image representations,” IEEE Transactions on Biomedical Engineering, vol. 39, no. 2, pp. 112–121, 1992.
[10]
N. G. Bourbakis and D. Kavraki, “An intelligent assistant for navigation of visually impaired people,” in Proceedings of the 2001 IEEE 2nd International Symposium on Bioinformatics and Bioengineering Conference, pp. 230–235, IEEE, 2001.
[11]
G. Sainarayanan, R. Nagarajan, and S. Yaacob, “Fuzzy image processing scheme for autonomous navigation of human blind,” Applied Soft Computing Journal, vol. 7, no. 1, pp. 257–264, 2007.
[12]
Z.-G. Fang, J. Xu, F.-l. Bao, and L.-H. Zhang, “AudioMan: design and implementation of environmental information data mapping,” Chinese Journal of Ergonomics, vol. 2, article 001, 2007.
[13]
M. Nie, J. Ren, Z. Li et al., “SoundView: an auditory guidance system based on environment understanding for the visually impaired people,” in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine (EMBC '09), pp. 7240–7243, IEEE, September 2009.
[14]
B. Su and L. Wang, “Application of Proteus Virtual System Modelling (VSM) in teaching of microcontroller,” in Proceedings of the International Conference on E-Health Networking, Digital Ecosystems and Technologies (EDT '10), pp. 375–378, IEEE, April 2010.
[15]
J. Burroughs, “X-10 home automation using the PIC16F877A,” Lamp, vol. 10, article 10, 2010.
[16]
D. Dakopoulos and N. G. Bourbakis, “Wearable obstacle avoidance electronic travel aids for blind: a survey,” IEEE Transactions on Systems, Man and Cybernetics C, vol. 40, no. 1, pp. 25–35, 2010.
[17]
S. Chumkamon, P. Tuvaphanthaphiphat, and P. Keeratiwintakorn, “A blind navigation system using RFID for indoor environments,” in Proceedings of the 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON '08), pp. 765–768, IEEE, May 2008.