We demonstrate improved device performance by applying oxide sidewall spacer technology to a block-oxide-enclosed Si body to create a fully depleted silicon-on-insulator (FDSOI) nMOSFET, which overcomes the need for a uniform ultrathin silicon film. The presence of block-oxide along the sidewalls of the Si body significantly reduces the influence of drain bias over the channel. The proposed FDSOI structure therefore outperforms conventional FDSOI with regard to its drain-induced barrier lowering (DIBL), on/off current ratio, subthreshold swing, and threshold voltage rolloff. The new FDSOI structure is in fact shown to behave similarly to an ultrathin body (UTB) SOI but without the associated disadvantages and technological challenges of the ultrathin film, because a thick Si body allows for reduced sensitivity to self-heating, thereby improving thermal stability. 1. Introduction Semiconductor science, triggered by the impetus of a growing market for faster, more reliable, and less costly chips, has been undergoing a rapid technological development [1]. Many of these new technologies, however, suffer from undesirable side effects. For example, as the gate length of CMOS—the bulk complementary metal-oxide semiconductor—is decreased, short-channel effects (SCEs), such as drain-induced barrier lowering (DIBL) and threshold voltage ( ) rolloff, become a significant problem because S/D encroachment begins to limit the gate’s ability to control the channel. Also, due to the existence of the PN junction between the Si substrate and the S/D regions, a large junction leakage current prevents the use of scaled-down transistors in low standby power (LSTP) applications. Moreover, the parasitic capacitance of the transistor may strongly affect the characteristics of CMOS devices [2–4]. Therefore, the use of planar technology for ultralarge-scale integrated (ULSI) circuits becomes more challenging. Recently, silicon-on-insulator (SOI) technology has demonstrated promise for nano-CMOS scaling. Compared to its bulk Si counterparts, SOI offers reduced capacitance and lower OFF-state leakage current ( ), mainly due to the presence of a buried oxide (BOX) layer under the Si active layer [5]. This can be attributed to the fact that the BOX can be seen as a “blocking layer” to reduce the drain electric field. Also, because the active region is fully isolated, it avoids the latch-up problem of classical CMOS devices. The benefits of SOI technology, however, are not without associated problems. A partially depleted (PD) SOI transistor cannot achieve an improved performance in
References
[1]
M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Prentice-Hall, Englewood Cliffs, NJ, USA, 2001.
[2]
M. J. Kumar and A. Chaudhry, “Two-dimensional analytical modeling of fully depleted DMG SOI MOSFET and evidence for diminished SCEs,” IEEE Transactions on Electron Devices, vol. 51, no. 4, pp. 569–574, 2004.
[3]
O. Thomas, M. Belleville, F. Jacquet, and P. Flatresse, “Impact of CMOS technology scaling on SRAM standby leakage reduction Techniques,” in Proceedings of the IEEE International Conference on Integrated Circuit Design and Technology (ICICDT '06), pp. 2–6, May 2006.
[4]
M. J. Kumar, V. Venkataraman, and S. K. Gupta, “On the parasitic gate capacitance of small-geometry MOSFETs,” IEEE Transactions on Electron Devices, vol. 52, no. 7, pp. 1676–1677, 2005.
[5]
O. Faynot, T. Poiroux, F. Andrieu et al., “Advanced SOI technologies: advantages and drawbacks,” in Proceedings of the Extended Abstracts of the 6th International Workshop on Junction Technology (IWJT '06), pp. 200–203, May 2006.
[6]
J. T. Lin, K. C. Lin, T. Y. Lee, and Y. C. Eng, “Investigation of the novel attributes of a vertical MOSFET with internal block layer (bVMOS): 2-D simulation study,” in Proceedings of the 25th International Conference on Microelectronics (MIEL '06), pp. 488–491, May 2006.
[7]
Y. Omura, H. Konishi, and S. Sato, “Quantum-mechanical suppression and enhancement of SCEs in ultrathin SOI MOSFETs,” IEEE Transactions on Electron Devices, vol. 53, no. 4, pp. 677–684, 2006.
[8]
S. Nuttinck, “Ultrathin-body SOI devices as a CMOS technology downscaling option: RF perspective,” IEEE Transactions on Electron Devices, vol. 53, no. 5, pp. 1193–1199, 2006.
[9]
C. G. Ahn, W. J. Cho, K. J. Im et al., “Recesseed source-drain (S/D) SOI MOSFETs with low S/D extension (SDE) external resistance,” in Proceedings of the IEEE International SOI Conference, pp. 207–208, October 2004.
[10]
K. Komiya, T. Kawamoto, S. Sato, and Y. Omura, “Impact of high-k plug on self-heating effects of SOI MOSFETs,” IEEE Transactions on Electron Devices, vol. 51, no. 12, pp. 2249–2251, 2004.
[11]
Z. Sun, L. Liu, and Z. Li, “Self-heating effect in SOI MOSFET's,” in Proceedings of the 5th International Conference on Solid-State and Integrated Circuit Technology, pp. 572–574, October 1998.
[12]
J. T. Lin, Y. C. Eng, K. D. Huang, T. Y. Lee, and K. C. Lin, “Ultra-short-channel characteristics of planar MOSFETs with block oxide,” in Proceedings of the 13th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA '06), pp. 146–149, July 2006.
[13]
J. T. Lin, Y. C. Eng, K. D. Huang, T. Y. Lee, and K. C. Lin, “A novel FDSOI MOSFET with block oxide enclosed body,” in Proceedings of the IEEE International Conference on Integrated Circuit Design and Technology (ICICDT '06), pp. 145–148, May 2006.
[14]
Y. C. Eng, J. T. Lin, K. D. Huang, T. Y. Lee, and K. C. Lin, “An investigation of the effects of Si thickness-induced variation of the electrical characteristics in FDSOI with block oxide,” in Proceedings of the 8th International Conference on Solid-State and Integrated Circuit Technology (ICSICT '06), pp. 61–64, October 2006.
[15]
E. Yuri and L. Jinning, “Precision implant requirements for SDE Junction Formation in sub-65?nm CMOS devices,” in Proceedings of the Extended Abstracts of the 6th International Workshop on Junction Technology (IWJT '06), pp. 21–24, May 2006.
[16]
A. Bansal and K. Roy, “Asymmetric halo CMOSFET to reduce static power dissipation with improved performance,” IEEE Transactions on Electron Devices, vol. 52, no. 3, pp. 397–405, 2005.
[17]
S. Venkatesan, J. W. Lutze, C. Lage, and W. J. Taylor, “Device drive current degradation observed with retrograde channel profiles,” in Proceedings of the International Electron Devices Meeting (IEDM '95), pp. 419–422, December 1995.
[18]
User's Manual, ISE-TCAD, 2004.
[19]
A. S. Sedra and K. C. Smith, Microelectronic Circuits, Oxford University Press, Oxford, UK, 4th edition, 1988.
[20]
A. Dixit, A. Kottantharayil, N. Collaert, M. Goodwin, M. Jurczak, and K. De Meyer, “Analysis of the parasitic S/D resistance in multiple-gate FETs,” IEEE Transactions on Electron Devices, vol. 52, no. 6, pp. 1132–1140, 2005.
[21]
H. Shang, J. Rubino, B. Doris et al., “Mobility and CMOS devices/circuits on sub-10?nm (110) ultra thin body SOI,” in Proceedings of the Symposium on VLSI Technology, pp. 78–79, June 2005.
[22]
K. Samsudin, B. Cheng, A. R. Brown, S. Roy, and A. Asenov, “UTB SOI SRAM cell stability under the influence of intrinsic parameter fluctuation,” in Proceedings of the 35th European Solid-State Device Research Conference (ESSDERC '05), pp. 553–556, September 2005.
[23]
S. Deleonibus, B. De Salvo, L. Clavelier et al., “CMOS devices architectures for the end of the roadmap and beyond,” in Proceedings of the 8th International Conference on Solid-State and Integrated Circuit Technology (ICSICT '06), pp. 51–54, October 2006.
[24]
J. B. Kuo and C. H. Lin, “Capacitance behavior of nanometer FD SOI CMOS devices with HfO2 high-k gate dielectric considering gate tunneling leakage current,” in Proceedings of the 25th International Conference on Microelectronics (MIEL '06), pp. 59–61, May 2006.
[25]
X. Yu, M. Yu, and C. Zhu, “Advanced HfTaON/SiO2 gate stack with high mobility and low leakage current for low-standby-power application,” IEEE Electron Device Letters, vol. 27, no. 6, pp. 498–501, 2006.