全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Normal Incidence of Sound Transmission Loss from Perforated Plates with Micro and Macro Size Holes

DOI: 10.1155/2014/534569

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper studies the sound transmission loss of perforated panels and investigates the effect of the hole diameter on the sound insulation performance under normal incidence of acoustic loading. The hole diameters are distinguished into micro (submillimeter) and macro (millimeter) sizes. In general, the transmission loss reduces as the perforation ratio is increased. However, by retaining the perforation ratio, it is found that the transmission loss increases as the hole diameter is reduced for a perforate with micro holes due to the effect of resistive part in the hole impedance, which is contrary to the results for those with the macro holes. Both show similar trend at high frequency where the fluid behavior inside the hole is inertial. Simple analytical formulae for engineering purpose are provided. Validation of the models with measurement data also gives good agreement. 1. Introduction Perforated panels are commonly found in acoustics and noise control applications, for example, as a facing for porous material or as a structure in machinery. For the former, the perforate acts more as the protective layer for the porous acoustic material but at the same time influences the surface impedance affecting the sound absorption. For the latter, introduction of holes reduces the surface volume velocity of a vibrating structure which then reduces the structural noise radiation. For both practices, the perforate is typically constructed with hole size which is obvious for one to observe (usually 1?mm). A perforated plate with submillimeter holes becomes well known recently as a non-fibrous sound absorber. Backed by an air layer in front of a rigid surface, this type of perforate behaves like a Helmholtz resonator which optimally absorbs sound energy at its resonant frequency. For optimum absorption, this microperforated panel (MPP) should have hole size ranging between 0.05 and 1?mm and with perforation ratio of 0.5%–1.5% [1]. Several works have been published to discuss the performance of the perforates in terms of their sound absorption and sound radiation. For examples, Lee et al. [2] investigated the effect of modal vibration on a MPP which is found to widen the frequency bandwidth of the absorption. Pfretzschner et al. [3] show that a MPP can be coupled with a thick perforated plate to increase structural strength of the absorber and at the same time also increases the absorption frequency range into two or three octave bands. A suspended MPP system without rigid backing is also found to have good sound absorption in application [4]. Sakagami et al.

References

[1]  D. Y. Maa, “Theory and design of microperforated panel sound absorbing constructions,” Scientia Sinica, no. 18, pp. 55–71, 1975 (Chinese).
[2]  Y. Y. Lee, E. W. M. Lee, and C. F. Ng, “Sound absorption of a finite flexible micro-perforated panel backed by an air cavity,” Journal of Sound and Vibration, vol. 287, no. 1-2, pp. 227–243, 2005.
[3]  J. Pfretzschner, P. Cobo, F. Simón, M. Cuesta, and A. Fernández, “Microperforated insertion units: an alternative strategy to design microperforated panels,” Applied Acoustics, vol. 67, no. 1, pp. 62–73, 2006.
[4]  H. V. Fuchs and X. Zha, “Micro-perforated structures as sound absorbers—a review and outlook,” Acta Acustica united with Acustica, vol. 92, no. 1, pp. 139–146, 2006.
[5]  K. Sakagami, M. Morimoto, and W. Koike, “A numerical study of double-leaf microperforated panel absorbers,” Applied Acoustics, vol. 67, no. 7, pp. 609–619, 2006.
[6]  M. Toyoda, M. Tanaka, and D. Takahashi, “Reduction of acoustic radiation by perforated board and honeycomb layer systems,” Applied Acoustics, vol. 68, no. 1, pp. 71–85, 2007.
[7]  A. Putra and D. J. Thompson, “Sound radiation from perforated plates,” Journal of Sound and Vibration, vol. 329, no. 20, pp. 4227–4250, 2010.
[8]  K.-T. Chen, “Study on the acoustic transmission loss of a rigid perforated screen,” Applied Acoustics, vol. 47, no. 4, pp. 303–318, 1996.
[9]  D. Takahashi and M. Tanaka, “Flexural vibration of perforated plates and porous elastic materials under acoustic loading,” Journal of the Acoustical Society of America, vol. 112, no. 4, pp. 1456–1464, 2002.
[10]  F. Asdrubali and G. Pispola, “Properties of transparent sound-absorbing panels for use in noise barriers,” Journal of the Acoustical Society of America, vol. 121, no. 1, pp. 214–221, 2007.
[11]  M. Toyoda and D. Takahashi, “Sound transmission through a microperforated-panel structure with subdivided air cavities,” Journal of the Acoustical Society of America, vol. 124, no. 6, pp. 3594–3603, 2009.
[12]  R. L. Mu, M. Toyoda, and D. Takahashi, “Sound insulation characteristics of multi-layer structures with a microperforated panel,” Applied Acoustics, vol. 72, no. 11, pp. 849–855, 2011.
[13]  A. Putra, A. Y. Ismail, R. Ramlan, R. Md. Ayob, and M. S. Py, “Normal incidence of sound transmission loss of a double-leaf partition inserted with a microperforated panel,” Advances in Acoustics and Vibration, vol. 2013, Article ID 216493, 8 pages, 2013.
[14]  A. D. Pierce, Acoustics, Acoustical Society of America, 1989.
[15]  F. J. Fahy and P. Gardonio, Sound and Structural Vibration: Radiation, Transmission and Response, Academic Press, London, UK, 2nd edition, 2006.
[16]  Y. Salissou and R. Panneton, “A general wave decomposition formula for the measurement of normal incidence sound transmission loss in impedance tube,” Journal of the Acoustical Society of America, vol. 125, no. 4, pp. 2083–2090, 2009.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133