全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Discrete Artificial Bee Colony for Computationally Efficient Symbol Detection in Multidevice STBC MIMO Systems

DOI: 10.1155/2013/578710

Full-Text   Cite this paper   Add to My Lib

Abstract:

A Discrete Artificial Bee Colony (DABC) is presented for joint symbol detection at the receiver in a multidevice Space-Time Block Code (STBC) Mutli-Input Multi-Output (MIMO) communication system. Exhaustive search (maximum likelihood detection) for finding an optimal detection has a computational complexity that increases exponentially with the number of mobile devices, transmit antennas per mobile device, and the number of bits per symbol. ABC is a new population-based, swarm-based Evolutionary Algorithms (EA) presented for multivariable numerical functions and has shown good performance compared to other mainstream EAs for problems in continuous domain. This algorithm simulates the intelligent foraging behavior of honeybee swarms. An enhanced discrete version of the ABC algorithm is presented and applied to the joint symbol detection problem to find a nearly optimal solution in real time. The results of multiple independent simulation runs indicate the effectiveness of DABC with other well-known algorithms previously proposed for joint symbol detection such as the near-optimal sphere decoding, minimum mean square error, zero forcing, and semidefinite relaxation, along with other EAs such as genetic algorithm, estimation of distributions algorithm, and the more novel biogeography-based optimization algorithm. 1. Introduction Multi-Input Multi-Output (MIMO) communication systems can offer spatial diversity gains in the fading channels and have significantly higher channel capacity than the Single-Input Single-Output (SISO) systems for the same total transmission power and bandwidth [1, 2]. The system proposed in this paper comprises of one receiving station and multiple transmitting devices. The receiver’s front end has multiple antennas, and each transmitting device has multiple transmit antennas. Employing the Space Time Block-Code (STBC) is realized to increase the capacity of MIMO systems and consequently improves data throughput and spectral efficiency [3]. Multiantenna systems are widely used because of their ability of dramatically increasing the channel capacity in fading channels [4]. Each transmit device uses an STBC; the receiver side performs the joint signal detection. Such a system is referred to as a multidevice (MD) STBC-MIMO system. Generally in an MD-STBC-MIMO system, the number of receive antennas is typically smaller than the cumulative number of transmit antennas used by all transmitting devices in the system. An example of MD-STBC-MIMO, with a smaller number of antennas at the base station or access point, would be the uplink

References

[1]  G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Communications, vol. 6, no. 3, pp. 311–335, 1998.
[2]  E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Transactions on Telecommunications, vol. 10, no. 6, pp. 585–595, 1999.
[3]  V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: performance criterion and code construction,” IEEE Transactions on Information Theory, vol. 44, no. 2, pp. 744–765, 1998.
[4]  A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications, Cambridge University Press, Cambridge, UK, 2003.
[5]  B. Hassibi and H. Vikalo, “On the sphere decoding algorithm: part I, the expected complexity,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 2806–2818, 2005.
[6]  J. Jaldén and B. Ottersten, “On the complexity of sphere decoding in digital communications,” IEEE Transactions on Signal Processing, vol. 53, no. 4, pp. 1474–1484, 2005.
[7]  D. Karaboga, “An Idea Based on Honey Bee Swarm for Numerical Optimization,” Tech. Rep. Tr06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
[8]  D. Karaboga and B. Akay, “A comparative study of Artificial Bee Colony algorithm,” Applied Mathematics and Computation, vol. 214, no. 1, pp. 108–132, 2009.
[9]  S. Ashrafinia, U. Pareek, M. Naeem, and D. Lee, “Biogeography-based optimization for joint relay assignment and power allocation in cognitive radio systems,” in Proceedings of the Symposium Series on Computational Intelligence, IEEE SSCI 2011— IEEE Symposium on Swarm Intelligence (SIS '11), pp. 237–244, Paris, France, April 2011.
[10]  J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, November/December 1995.
[11]  D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 1989.
[12]  D. Karaboga, C. Ozturk, N. Karaboga, and B. Gorkemli, “Artificial bee colony programming for symbolic regression,” Information Sciences, vol. 209, pp. 1–15, 2012.
[13]  N. Q. Uy, N. X. Hoai, M. O'Neill, R. I. McKay, and E. Galván-López, “Semantically-based crossover in genetic programming: application to real-valued symbolic regression,” Genetic Programming and Evolvable Machines, vol. 12, no. 2, pp. 91–119, 2011.
[14]  S. N. Omkar, J. Senthilnath, R. Khandelwal, G. Narayana Naik, and S. Gopalakrishnan, “Artificial Bee Colony (ABC) for multi-objective design optimization of composite structures,” Applied Soft Computing Journal, vol. 11, no. 1, pp. 489–499, 2011.
[15]  J. D. Schaffer, Multi-objective optimization with vector evaluated genetic algorithms [Ph.D. thesis], 1984.
[16]  C. Xu, H. Duan, and F. Liu, “Chaotic artificial bee colony approach to Uninhabited Combat Air Vehicle (UCAV) path planning,” Aerospace Science and Technology, vol. 14, no. 8, pp. 535–541, 2010.
[17]  N. Karaboga, “A new design method based on artificial bee colony algorithm for digital IIR filters,” Journal of the Franklin Institute, vol. 346, no. 4, pp. 328–348, 2009.
[18]  J. Liang, M. Guo, Y. Fan, Y. Yin, and M. Ma, “SAR image segmentation based on Artificial Bee Colony algorithm,” Applied Soft Computing, vol. 11, pp. 5205–5214, 2011.
[19]  M. Cengiz Taplamacioglu and H. Gozde, “Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system,” Journal of the Franklin Institute, vol. 348, pp. 1927–1946, 2011.
[20]  M. Sonmez, “Artificial Bee Colony algorithm for optimization of truss structures,” Applied Soft Computing Journal, vol. 11, no. 2, pp. 2406–2418, 2011.
[21]  H. Narasimhan, “Parallel artificial bee colony (PABC) algorithm,” in Proceedings of the World Congress on Nature and Biologically Inspired Computing (NABIC '09), pp. 306–311, Coimbatore, India, December 2009.
[22]  B. Akay, C. Ozturk, and D. Karaboga, “Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks,” in Proceedings of the 4th International Conference on Modeling Decisions for Artificial Intelligence (MDAI '07), Berlin, Germany, 2007.
[23]  H. A. A. Bahamish, R. Abdullah, and R. A. Salam, “Protein tertiary structure prediction using artificial bee colony algorithm,” in Proceedings of the 3rd Asia International Conference on Modelling and Simulation (AMS '09), pp. 258–263, Bali, Indonesia, May 2009.
[24]  D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm,” Journal of Global Optimization, vol. 39, no. 3, pp. 459–471, 2007.
[25]  M. Nekuii, M. Kisialiou, T. N. Davidson, and Z. Q. Luo, “Efficient soft demodulation of MIMO QPSK via semidefinite relaxation,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '08), pp. 2665–2668, Las Vegas, Nev, USA, April 2008.
[26]  J. A. Lozano, Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, Springer, 2002.
[27]  D. Simon, “Biogeography-based optimization,” IEEE Transactions on Evolutionary Computation, vol. 12, no. 6, pp. 702–713, 2008.
[28]  B. Hassibi and B. M. Hochwald, “High-rate codes that are linear in space and time,” IEEE Transactions on Information Theory, vol. 48, no. 7, pp. 1804–1824, 2002.
[29]  R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.
[30]  M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 26, no. 1, pp. 29–41, 1996.
[31]  P. W. Tsai, J. S. Pan, B. Y. Liao, and S. C. Chu, “Enhanced artificial bee colony optimization,” International Journal of Innovative Computing, Information and Control, vol. 5, no. 12, pp. 5081–5092, 2009.
[32]  J. Wang, T. Li, and R. Ren, “Real time IDSs based on artificial bee colony-support vector machine algorithm,” in Proceedings of the 3rd International Workshop on Advanced Computational Intelligence (IWACI '10), pp. 91–96, Suzhou, China, August 2010.
[33]  M. Salim and M. T. Vakil-Baghmisheh, “Discrete bee algorithms and their application in multivariable function optimization,” Artificial Intelligence Review, vol. 35, no. 1, pp. 73–84, 2011.
[34]  O. Damen, A. Chkeif, and J. C. Belfiore, “Lattice code decoder for space-time codes,” IEEE Communications Letters, vol. 4, no. 5, pp. 161–163, 2000.
[35]  C. Comaniciu, N. B. Mandayam, and H. V. Poor, Wireless Networks: Multiuser Detection in Cross-Layer Design, Springer, New York, NY, USA, 2005.
[36]  M. Kisialiou and Z. Q. Luo, “Performance analysis of quasi-maximum-likelihood detector based on semi-definite programming,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '05), pp. III433–III436, March 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413