全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Novel Discrete Compactness-Based Training for Vector Quantization Networks: Enhancing Automatic Brain Tissue Classification

DOI: 10.1155/2013/278241

Full-Text   Cite this paper   Add to My Lib

Abstract:

An approach for nonsupervised segmentation of Computed Tomography (CT) brain slices which is based on the use of Vector Quantization Networks (VQNs) is described. Images are segmented via a VQN in such way that tissue is characterized according to its geometrical and topological neighborhood. The main contribution rises from the proposal of a similarity metric which is based on the application of Discrete Compactness (DC) which is a factor that provides information about the shape of an object. One of its main strengths lies in the sense of its low sensitivity to variations, due to noise or capture defects, in the shape of an object. We will present, compare, and discuss some examples of segmentation networks trained under Kohonen’s original algorithm and also under our similarity metric. Some experiments are established in order to measure the effectiveness and robustness, under our application of interest, of the proposed networks and similarity metric. 1. Introduction 1.1. Problem Statement The main objective of this work is the description of our methodology for automatic classification of brain tissues. In concrete terms, a use of Vector Quantization Networks (VQNs) in the automatic nonsupervised characterization of tissue in the human head is proposed. It is expected, by means of nonsupervised classification, that brain regions presenting similar features are properly grouped. In such sense, the idea to be developed here considers the application of a similarity metric which is sustained in the use of the Discrete Compactness (DC). The DC is a factor that shares information about the shape of an object. It was proposed originally by Bribiesca [1] and it is inspired by the familiar Shape Compactness of an object. However, it has a greater robustness because it has a low sensitivity to variations, in the shape of an object, produced due to noise or capture defects. The original specification for Kohonen’s training algorithm considered the use of the Euclidean Distance as similarity metric in order to identify the so-called Winner Neuron. Several works also mention that the use of another metrics in order to achieve this task is possible: the Canberra Distance [2], the Sup Distance (a special case of the Minkowski Distance also known as Chebyshev Distance) [3], the Manhattan Distance [4], and the Dot Product [2]. In this regard, we have done some experiments of this kind; see [5]. The metric to be used depends on the specific characteristics of the classification task to be performed by a VQN. In our case we aim to characterize cerebral tissue by

References

[1]  E. Bribiesca, “Measuring 2-D shape compactness using the contact perimeter,” Computers and Mathematics with Applications, vol. 33, no. 11, pp. 1–9, 1997.
[2]  N. B. M. Yusof, Multilevel Learning in Kohonen SOM Network for Classification Problems, Universiti Teknologi Malaysia, 2006.
[3]  R. Kamimura, S. Aida-Hyugaji, and Y. Maruyama, “Information-theoretic self-organizing maps with minkowski distance,” in Proceedings of the 17th IASTED International Conference on Artificial Intelligence and Soft Computing, pp. 15–20, ASC, July 2003.
[4]  M. Porrmann, M. Franzmeier, H. Kalte, U. Witkowski, and U. A. Rückert, “Reconfigurable SOM hardware accelerator,” in Proceedings of the 10th European Symposium on Artificial Neural Networks (ESANN '02), pp. 337–342, Bruges, Belgium, April 2004.
[5]  R. Pérez-Aguila, “Automatic segmentation and classification of computed tomography brain images: an approach using one-dimensional Kohonen networks,” IAENG International Journal of Computer Science, vol. 37, no. 1, pp. 27–35, 2010.
[6]  R. Pérez-Aguila, “Brain tissue characterization via non-supervised one-dimensional Kohonen networks,” in Proceedings of the 19th International Conference on Electronics, Communications and Computers (CONIELECOMP '09), pp. 197–201, IEEE Computer Society, Puebla, México, February 2009.
[7]  R. Pérez-Aguila, “Enhancing brain tissue segmentation and image classification via 1D Kohonen networks and discrete compactness: an experimental study,” Engineering Letters, vol. 21, no. 4, pp. 171–180, 2013.
[8]  E. Davalo and P. Na?m, Neural Networks, The Macmillan Press, 1992.
[9]  H. Ritter, T. Martinetz, and K. Schulten, Neural Computation and Self-Organizing Maps: An Introduction, Addison-Wesley, 1992.
[10]  J. Hilera and V. Martínez, Redes Neuronales Artificiales, Alfaomega, México, 2000, (Spanish).
[11]  D. Niebur, “An example of unsupervised networks Kohonen’s self-organizing feature map,” Technical Report, Jet Propulsion Laboratory & California Institute of Technology, 1995, http://trs-new.jpl.nasa.gov/dspace/handle/2014/30739.
[12]  R. Pérez-Aguila, P. Gómez-Gil, and A. Aguilera, “Non-supervised classification of 2D color images using Kohonen networks and a novel metric,” in Progress in Pattern Recognition, Image Analysis and Applications, vol. 3773 of Lecture Notes in Computer Science, pp. 271–284, Springer, Berlin, Germany, 2005.
[13]  M. P?ll?, T. Honkela, and T. Kohonen, “Bibliography of self-organizing map (SOM) papers: 2002–2005 addendum,” TKK Reports in Information and Computer Science TKK-ICS-R23, Department of Information and Computer Science, Faculty of Information and Natural Sciences, Helsinki University of Technology, 2009, http://lib.tkk.fi/Reports/2009/isbn9789522482532.pdf.
[14]  E. Bribiesca and R. S. Montero, “State of the art of compactness and circularity measures,” International Mathematical Forum, vol. 4, no. 27, pp. 1305–1335, 2009.
[15]  S. Marchand-Maillet and Y. M. Sharaiha, Binary Digital Image Processing: A Discrete Approach, Academic Press, 2000.
[16]  R. Osserman, “The isoperimetric inequality,” Bulletin of the American Mathematical Society, vol. 84, no. 6, pp. 1182–1238, 1978.
[17]  J. Einenkel, U.-D. Braumann, L.-C. Horn et al., “Evaluation of the invasion front pattern of squamous cell cervical carcinoma by measuring classical and discrete compactness,” Computerized Medical Imaging and Graphics, vol. 31, no. 6, pp. 428–435, 2007.
[18]  A. B. Abche, A. Maalouf, and E. Karam, “A hybrid approach for the segmentation of MRI brain images,” in Proceedings of the IEEE 13th International Conference on Systems, Signals and Image Processing, September 2006.
[19]  F. Peng, K. Yuan, S. Feng, and W. Chen, “Pre-processing of CT brain images for content-based image retrieval,” in Proceedings of the 1st International Conference on BioMedical Engineering and Informatics (BMEI '08), pp. 208–212, Sanya, China, May 2008.
[20]  M. Berthod, Z. Kato, S. Yu, and J. Zerubia, “Bayesian image classification using Markov random fields,” Image and Vision Computing, vol. 14, no. 4, pp. 285–295, 1996.
[21]  R. Pérez-Aguila, Orthogonal polytopes: study and application [Ph.D. thesis], Universidad de las Américas Puebla (UDLAP), 2006, http://catarina.udlap.mx/u_dl_a/tales/documentos/dsc/perez_a_r/.
[22]  R. Pérez-Aguila, “Representing and visualizing vectorized videos through the extreme vertices model in the n-dimensional space (nD-EVM),” Journal Research in Computer Science, vol. 29, pp. 65–80, 2007.
[23]  BrainWeb: Simulated Brain Database, 2013, http://www.bic.mni.mcgill.ca/brainweb/.
[24]  C. A. Cocosco, V. Kollokian, R. K.-S. Kwan, and A. C. Evans, “Brain web: online interface to a 3D MRI simulated brain database,” NeuroImage, vol. 5, no. 4, part 2, article S425, 1997.
[25]  D. L. Collins, A. P. Zijdenbos, V. Kollokian et al., “Design and construction of a realistic digital brain phantom,” IEEE Transactions on Medical Imaging, vol. 17, no. 3, pp. 463–468, 1998.
[26]  R. K.-S. Kwan, A. C. Evans, and G. B. Pike, “An extensible MRI simulator for post-processing evaluation,” in Visualization in Biomedical Computing, vol. 1131 of Lecture Notes in Computer Science, pp. 135–140, Springer, 1996.
[27]  R. K.-S. Kwan, A. C. Evans, and B. Pike, “MRI simulation-based evaluation of image-processing and classification methods,” IEEE Transactions on Medical Imaging, vol. 18, no. 11, pp. 1085–1097, 1999.
[28]  F. S. McDonald, P. S. Mueller, and G. Ramakrishna, Mayo Clinic Images in Internal Medicine, Informa HealthCare, 1st edition, 2004.
[29]  R. Pérez-Aguila, Una Introducción al Cómputo Neuronal Artificial, El Cid Editor, Argentina, 2012, (Spanish).

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133