全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estimation of Static Pull-In Instability Voltage of Geometrically Nonlinear Euler-Bernoulli Microbeam Based on Modified Couple Stress Theory by Artificial Neural Network Model

DOI: 10.1155/2013/741896

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, the static pull-in instability of beam-type micro-electromechanical system (MEMS) is theoretically investigated. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. Two supervised neural networks, namely, back propagation (BP) and radial basis function (RBF), have been used for modeling the static pull-in instability of microcantilever beam. These networks have four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data employed for training the networks and capabilities of the models in predicting the pull-in instability behavior has been verified. Based on verification errors, it is shown that the radial basis function of neural network is superior in this particular case and has the average errors of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations show a good agreement, which also proves the feasibility and effectiveness of the adopted approach. 1. Introduction Micro-electromechanical systems (MEMS) are widely being used in today’s technology. So investigating the problems referring to MEMS owns a great importance. One of the significant fields of study is the stability analysis of the parametrically excited systems. Parametrically excited micro-electromechanical devices are ever being increasingly used in radio, computer, and laser engineering [1]. Parametric excitation occurs in a wide range of mechanics, due to time-dependent excitations, especially periodic ones; some examples are columns made of nonlinear elastic material, beams with a harmonically variable length, parametrically excited pendulums, and so forth. Investigating stability analysis on parametrically excited MEM systems is of great importance. In 1995 Gasparini et al. [2] examined the transition between the stability and instability of a cantilevered beam exposed to a partially follower load. Applying voltage difference between an electrode and ground causes the electrode to deflect towards the ground. At a critical voltage, which is known as pull-in voltage, the electrode becomes unstable and pulls in onto the substrate [3]. The static pull-in behavior of MEMS actuators has been

References

[1]  I. Khatami, M. H. Pashai, and N. Tolou, “Comparative vibration analysis of a parametrically nonlinear excited oscillator using HPM and numerical method,” Mathematical Problems in Engineering, vol. 2008, Article ID 956170, 11 pages, 2008.
[2]  A. M. Gasparini, A. V. Saetta, and R. V. Vitaliani, “On the stability and instability regions of non-conservative continuous system under partially follower forces,” Computer Methods in Applied Mechanics and Engineering, vol. 124, no. 1-2, pp. 63–78, 1995.
[3]  Y. T. Beni, M. R. Abadyanb, and A. Noghrehabadi, “Investigation of size effect on the pull-in instability of beam type NEMS under Van Der Waals attraction,” Procedia Engineering, vol. 10, pp. 1718–1723, 2011.
[4]  P. M. Osterberg and S. D. Senturia, “M-test: a test chip for MEMS material property measurement using electrostatically actuated test structures,” Journal of Microelectromechanical Systems, vol. 6, no. 2, pp. 107–118, 1997.
[5]  P. M. Osterberg, R. K. Gupta, J. R. Gilbert, and S. D. Senturia, “Quantitative models for the measurement of residual stress, Poisson ratio and Young's modulus using electrostatic pull-in of beams and diaphragms,” in Proceedings of the Solid-State Sensor and Actuator Workshop, pp. 184–188, Hilton Head Island, SC, USA, June 1994.
[6]  H. Sadeghian, G. Rezazadeh, and P. M. Osterberg, “Application of the generalized differential quadrature method to the study of pull-in phenomena of MEMS switches,” Journal of Microelectromechanical Systems, vol. 16, no. 6, pp. 1334–1340, 2007.
[7]  Y. T. Beni, A. Koochi, and M. Abadyan, “Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS,” Physica E, vol. 43, no. 4, pp. 979–988, 2011.
[8]  A. Koochi, A. S. Kazemi, Y. T. Beni, A. Yekrangi, and M. Abadyan, “Theoretical study of the effect of Casimir attraction on the pull-in behavior of beam-type NEMS using modified Adomian method,” Physica E, vol. 43, no. 2, pp. 625–632, 2010.
[9]  M. Ghalambaz, A. Noghrehabadi, M. Abadyan, Y. T. Beni, A. R. N. Abadi, and M. N. Abadi, “A new power series solution on the electrostatic pull-in instability of nano-cantilever actuators,” Procedia Engineering, vol. 10, pp. 3708–3716, 2011.
[10]  A. Y. Salekdeh, A. Koochi, Y. T. Beni, and M. Abadyan, “Modeling effect of three nano-scale physical phenomena on instability voltage of multi-layer MEMS/NEMS: material size dependency, van der waals force and non-classic support conditions,” Trends in Applied Sciences Research, vol. 7, no. 1, pp. 1–17, 2012.
[11]  M. M. Zand and M. T. Ahmadian, “Characterization of coupled-domain multi-layer microplates in pull-in phenomenon, vibrations and dynamics,” International Journal of Mechanical Sciences, vol. 49, no. 11, pp. 1226–1237, 2007.
[12]  K. Das and R. C. Batra, “Symmetry breaking, snap-through and pull-in instabilities under dynamic loading of microelectromechanical shallow arches,” Smart Materials and Structures, vol. 18, no. 11, Article ID 115008, 2009.
[13]  M. Mojahedi, M. M. Zand, and M. T. Ahmadian, “Static pull-in analysis of electrostatically actuated microbeams using homotopy perturbation method,” Applied Mathematical Modelling, vol. 34, no. 4, pp. 1032–1041, 2010.
[14]  S. A. Tajalli, M. M. Zand, and M. T. Ahmadian, “Effect of geometric nonlinearity on dynamic pull-in behavior of coupled-domain microstructures based on classical and shear deformation plate theories,” European Journal of Mechanics, vol. 28, no. 5, pp. 916–925, 2009.
[15]  S. Pamidighantam, R. Puers, K. Baert, and H. A. C. Tilmans, “Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions,” Journal of Micromechanics and Microengineering, vol. 12, no. 4, pp. 458–464, 2002.
[16]  S. Chowdhury, M. Ahmadi, and W. C. Miller, “A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams,” Journal of Micromechanics and Microengineering, vol. 15, no. 4, pp. 756–763, 2005.
[17]  R. C. Batra, M. Porfiri, and D. Spinello, “Review of modeling electrostatically actuated microelectromechanical systems,” Smart Materials and Structures, vol. 16, no. 6, pp. R23–R31, 2007.
[18]  W.-H. Lin and Y.-P. Zhao, “Pull-in instability of micro-switch actuators: model review,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 9, no. 2, pp. 175–184, 2008.
[19]  W. T. Koiter, “Couple-stresses in the theory of elasticity, I and II,” Koninklijke Nederlandse Akademie Van Weteschappen: Series B, vol. 67, pp. 17–44, 1964.
[20]  R. D. Mindlin and H. F. Tiersten, “Effects of couple-stresses in linear elasticity,” Archive for Rational Mechanics and Analysis, vol. 11, no. 1, pp. 415–448, 1962.
[21]  R. A. Toupin, “Elastic materials with couple-stresses,” Archive for Rational Mechanics and Analysis, vol. 11, no. 1, pp. 385–414, 1962.
[22]  A. Anthoine, “Effect of couple-stresses on the elastic bending of beams,” International Journal of Solids and Structures, vol. 37, no. 7, pp. 1003–1018, 2000.
[23]  F. Yang, A. C. M. Chong, D. C. C. Lam, and P. Tong, “Couple stress based strain gradient theory for elasticity,” International Journal of Solids and Structures, vol. 39, no. 10, pp. 2731–2743, 2002.
[24]  W. Xia, L. Wang, and L. Yin, “Nonlinear non-classical microscale beams: Static bending, postbuckling and free vibration,” International Journal of Engineering Science, vol. 48, no. 12, pp. 2044–2053, 2010.
[25]  M. Asghari, M. Rahaeifard, M. H. Kahrobaiyan, and M. T. Ahmadian, “The modified couple stress functionally graded Timoshenko beam formulation,” Materials and Design, vol. 32, no. 3, pp. 1435–1443, 2011.
[26]  H. Rong, Q.-A. Huang, M. Nie, and W. Li, “An analytical model for pull-in voltage of clamped-clamped multilayer beams,” Sensors and Actuators: A, vol. 116, no. 1, pp. 15–21, 2004.
[27]  J. A. Freeman and D. M. Skapura, Neural Networks: Algorithms, Applications, and Programming Techniques, Computation and Neural Systems, Addision-Wesley, Boston, Mass, USA, 1991.
[28]  Y. T. Beni and M. Heidari, “Numerical study on pull-in instability analysis of geometrically nonlinear Euler-Bernoulli microbeam based on modified couple stress theory,” International Journal of Engineering and Applied Sciences, vol. 4, no. 4, pp. 41–53, 2012.
[29]  R. K. Gupta, Electrostatic pull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems [Ph.D. thesis], Massachusetts Institute of Technology (MIT), Cambridge, Mass, USA, 1997.
[30]  J. Zhao, S. Zhou, B. Wang, and X. Wang, “Nonlinear microbeam model based on strain gradient theory,” Applied Mathematical Modelling, vol. 36, no. 6, pp. 2674–2686, 2012.
[31]  D. Gao, Y. Kinouchi, K. Ito, and X. Zhao, “Neural networks for event extraction from time series: a back propagation algorithm approach,” Future Generation Computer Systems, vol. 21, no. 7, pp. 1096–1105, 2005.
[32]  H. Demuth and M. Beale, “Matlab Neural Networks Toolbox, User's Guide, The Math Works,” 2001, http://www.mathworks.com/.
[33]  H. Shao and G. Zheng, “Convergence analysis of a back-propagation algorithm with adaptive momentum,” Neurocomputing, vol. 74, no. 5, pp. 749–752, 2011.
[34]  H. Zhang, W. Wu, and M. Yao, “Boundedness and convergence of batch back-propagation algorithm with penalty for feedforward neural networks,” Neurocomputing, vol. 89, pp. 141–146, 2012.
[35]  D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413