全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fuzzified Data Based Neural Network Modeling for Health Assessment of Multistorey Shear Buildings

DOI: 10.1155/2013/962734

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present study intends to propose identification methodologies for multistorey shear buildings using the powerful technique of Artificial Neural Network (ANN) models which can handle fuzzified data. Identification with crisp data is known, and also neural network method has already been used by various researchers for this case. Here, the input and output data may be in fuzzified form. This is because in general we may not get the corresponding input and output values exactly (in crisp form), but we have only the uncertain information of the data. This uncertain data is assumed in terms of fuzzy number, and the corresponding problem of system identification is investigated. 1. Introduction System identification methods in structural dynamics, in general, solve inverse vibration problems to identify properties of a structure from measured data. The rapid progress in the field of computer science and computational mathematics during recent decades has led to an increasing use of process computers and models to analyze, supervise, and control technical processes. The use of computers and efficient mathematical tools allows identification of the process dynamics by evaluating the input and output signals of the system. The result of such a process identification is usually a mathematical model by which the dynamic behaviour can be estimated or predicted. The system identification problem has been nicely explained in a recent paper [1]. The same statements from [1] are reproduced below for the benefit of the readers. The study of structures dynamic behaviour may be categorized into two distinct activities: analytical and/or numerical modelling (e.g., finite element models) and vibration tests (e.g., experimental modal models). Due to different limitations and assumptions, each approach has its advantages and shortcomings. Therefore, in order to determine the dynamic properties of the structure, reconciliation processes including model correlation and/or model updating should be performed. Model updating can be defined as the adjustment of an existing analytical/numerical model in the light of measured vibration test. After adjustment, the updated model is expected to represent the dynamic behaviour of the structure more accurately as proposed by Friswell et al. [2]. With the recent advances in computing technology for data acquisition, signal processing, and analysis, the parameters of structural models may be updated from the measured responses under excitation of the structure. This procedure is achieved using system identification techniques as an

References

[1]  E. Khanmirza, N. Khaji, and V. J. Majd, “Model updating of multistory shear buildings for simultaneous identification of mass, stiffness and damping matrices using two different soft-computing methods,” Expert Systems with Applications, vol. 38, no. 5, pp. 5320–5329, 2011.
[2]  M. I. Friswell, D. J. Inman, and D. F. Pilkey, “The direct updating of damping and stiffness matrices,” AIAA Journal, vol. 36, no. 3, pp. 491–493, 1998.
[3]  M. Tanaka and H. D. Bui, Inverse Problems in Engineering Mechanics, Balkema, Rotterdam, The Netherlands, 1994.
[4]  K. F. Alvin, A. N. Robertson, G. W. Reich, and K. C. Park, “Structural system identification: from reality to models,” Computers and Structures, vol. 81, no. 12, pp. 1149–1176, 2003.
[5]  S. D. Fassois and J. S. Sakellariou, “Time-series methods for fault detection and identification in vibrating structures,” Philosophical Transactions of the Royal Society A, vol. 365, no. 1851, pp. 411–448, 2007.
[6]  S. F. Marsi, G. A. Bekey, H. Sassi, and T. K. Caughey, “Non-parametric identification of a class of non-linear multidegree dynamic systems,” Earthquake Engineering & Structural Dynamics, vol. 10, no. 1, pp. 1–30, 1982.
[7]  P. Ibanez, “Review of analytical and experimental techniques for improving structural dynamic models,” Welding Research Council Bulletin, no. 249, 1979.
[8]  A. K. Datta, M. Shrikhande, and D. K. Paul, “System identification of buildings: a review,” in Proceedings of 11th Symposium on Earthquake Engineering, University of Roorkee, Roorkee, India.
[9]  C.-H Loh and I.-C Tou, “A system identification approach to the detection of changes in both linear and non-linear structural parameters,” Earthquake Engineering & Structural Dynamics, vol. 24, no. 1, pp. 85–97, 1995.
[10]  P. Yuan, Z. Wu, and X. Ma, “Estimated mass and stiffness matrices of shear building from modal test data,” Earthquake Engineering and Structural Dynamics, vol. 27, no. 5, pp. 415–421, 1998.
[11]  C. H. Chen, “Structural identification from field measurement data using a neural network,” Smart Materials and Structures, vol. 14, no. 3, pp. S104–S115, 2005.
[12]  C. S. Huang, S. L. Hung, C. M. Wen, and T. T. Tu, “A neural network approach for structural identification and diagnosis of a building from seismic response data,” Earthquake Engineering and Structural Dynamics, vol. 32, no. 2, pp. 187–206, 2003.
[13]  C. Y. Kao and S. L. Hung, “Detection of structural damage via free vibration responses generated by approximating artificial neural networks,” Computers and Structures, vol. 81, no. 28-29, pp. 2631–2644, 2003.
[14]  Z. Wu, B. Xu, and K. Yokoyama, “Decentralized parametric damage detection based on neural networks,” Computer-Aided Civil and Infrastructure Engineering, vol. 17, no. 3, pp. 175–184, 2002.
[15]  B. Xu, Z. Wu, G. Chen, and K. Yokoyama, “A localized identification method with neural networks and its application to structural health monitoring,” Journal of Structural Engineering A, vol. 48, pp. 419–427, 2002.
[16]  B. Xu, Z. Wu, G. Chen, and K. Yokoyama, “Direct identification of structural parameters from dynamic responses with neural networks,” Engineering Applications of Artificial Intelligence, vol. 17, no. 8, pp. 931–943, 2004.
[17]  S. Chakraverty, “Identification of structural parameters of multistorey shear buildings from modal data,” Earthquake Engineering and Structural Dynamics, vol. 34, no. 6, pp. 543–554, 2005.
[18]  M. J. Perry, C. G. Koh, and Y. S. Choo, “Modified genetic algorithm strategy for structural identification,” Computers and Structures, vol. 84, no. 8-9, pp. 529–540, 2006.
[19]  G. S. Wang, “Application of hybrid genetic algorithm to system identification,” Structural Control and Health Monitoring, vol. 16, no. 2, pp. 125–153, 2009.
[20]  S. Yoshitomi and I. Takewaki, “Noise-bias compensation in physical-parameter system identification under microtremor input,” Engineering Structures, vol. 31, no. 2, pp. 580–590, 2009.
[21]  Y. Lu and Z. Tu, “A two-level neural network approach for dynamic FE model updating including damping,” Journal of Sound and Vibration, vol. 275, no. 3–5, pp. 931–952, 2004.
[22]  C. G. Koh, Y. F. Chen, and C. Y. Liaw, “A hybrid computational strategy for identification of structural parameters,” Computers and Structures, vol. 81, no. 2, pp. 107–117, 2003.
[23]  H. Tang, S. Xue, and C. Fan, “Differential evolution strategy for structural system identification,” Computers and Structures, vol. 86, no. 21-22, pp. 2004–2012, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133