全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Properties of the HII Regions Derived Using Integral Field Spectroscopy

DOI: 10.1155/2013/596501

Full-Text   Cite this paper   Add to My Lib

Abstract:

Here we review some of our more recent results on the observed properties of HII regions using Integral Field Spectroscopy. In particular, we illustrate the use of this technique to study in detail the ionization conditions across the nebulae for galactic HII regions (focused on the Orion Nebula) and the statistical study of large samples of extragalactic HII regions. We review the reported new scaling relation between the local mass density and the oxygen abundance across the disk galaxies and the recently discovered universal gradient for oxygen abundances. We update our previous results the lack of a dependence of the Mass-Metallicity relation with the starformation rate, including new unpublished data. Finally we discuss on the relation between the ionization conditions in the nebulae and the underlying stellar population. All together our results indicate that disk galaxies present a chemical enrichment dominated by an inside-out growth scenario, with a less evident effect of radial migrations and/or outflows. 1. Introduction Nebular emission lines from bright-individual HII regions have been, historically, the main tool at our disposal for the direct measurement of the gas-phase abundance at discrete spatial positions in galaxies. A good observational understanding of the distribution of element abundances across the surface of nearby galaxies is necessary to place constraints on theories of galactic chemical evolution. The same information is crucial to derive accurate star formation histories of and obtain information on the stellar nucleosynthesis in normal spiral galaxies. Several factors dictate the chemical evolution in a galaxy, including the primordial composition, the content and distribution of molecular and neutral gas, the star formation history (SFH), feedback, the transport and mixing of gas, the initial mass function (IMF), (e.g., [1, 2] and references therein). All these ingredients contribute through a complex process to the evolutionary histories of the stars and the galaxies in general. Accurate measurements of the present chemical abundance constrain the different possible evolutionary scenarios, and therefore it is important to determine the elemental composition using a common approch, among different galaxy types. Previous spectroscopic studies have unveiled some aspects of the complex processes at play between the chemical abundances of galaxies and their physical properties. Although these studies have been successful in determining important relationships, scaling laws and systematic patterns (e.g.,

References

[1]  á. R. López-Sánchez, “Massive star formation in Wolf-Rayet galaxies: V. Star-formation rates, masses and the importance of galaxy interactions,” Astronomy & Astrophysics, vol. 521, article A63, 31 pages, 2010.
[2]  á. R. López-Sánchez and C. Esteban, “Massive star formation in Wolf-Rayet galaxies: IV. Colours, chemical-composition analysis and metallicity—luminosity relations,” Astronomy & Astrophysics, vol. 517, article A85, 28 pages, 2010.
[3]  J. Lequeux, M. Peimbert, J. F. Rayo, A. Serrano, and S. Torres-Peimbert, “Chemical composition and evolution of irregular and blue compact galaxies,” Astronomy & Astrophysics, vol. 80, pp. 155–166, 1979.
[4]  E. D. Skillman, “Empirical oxygen abundances and physical conditions for relatively low abundance H?? regions,” Astrophysical Journal, vol. 347, pp. 883–893, 1989.
[5]  M. B. Vila-Costas and M. G. Edmunds, “The relation between abundance gradients and the physical properties of spiral galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 259, no. 1, pp. 121–145, 1992.
[6]  D. Zaritsky, R. C. Kennicutt Jr., and J. P. Huchra, “H?? regions and the abundance properties of spiral galaxies,” Astrophysical Journal Letters, vol. 420, no. 1, pp. 87–109, 1994.
[7]  C. A. Tremonti, T. M. Heckman, G. Kauffmann et al., “The origin of the mass-metallicity relation: insights from 53,000 star-forming galaxies in the sloan digital sky survey,” Astrophysical Journal Letters, vol. 613, no. 2, pp. 898–913, 2004.
[8]  D. R. Garnett, “The luminosity-metallicity relation, effective yields, and metal loss in spiral and irregular galaxies,” Astrophysical Journal Letters, vol. 581, no. 2, pp. 1019–1031, 2002.
[9]  A. I. Diaz, “Abundance gradients in disc galaxies and chemical evolution models,” in Evolutionary Phenomena in Galaxies, J. E. Beckman and B. E. J. Pagel, Eds., pp. 377–397, 1989.
[10]  P. Martin and J.-R. Roy, “The influence of bars on the chemical composition of spiral galaxies,” Astrophysical Journal Letters, vol. 424, no. 2, pp. 599–614, 1994.
[11]  J. Moustakas and R. C. Kennicutt Jr., “An integrated spectrophotometric survey of nearby star-forming galaxies,” Astrophysical Journal Supplement Series, vol. 164, no. 1, pp. 81–98, 2006.
[12]  F. F. Rosales-Ortega, R. C. Kennicutt Jr., S. F. Sánchez, et al., “PINGS: the PPAK IFS nearby galaxies survey,” Monthly Notices of the Royal Astronomical Society, vol. 405, pp. 735–758, 2010.
[13]  S. F. Sánchez, R. C. Kennicutt Jr., A. Gil de Paz et al., “CALIFA, the Calar Alto Legacy Integral Field Area survey: I. Survey presentation,” Astronomy & Astrophysics, vol. 538, article A8, 2012.
[14]  S. F. Sánchez, F. F. Rosales-Ortega, R. A. Marino, et al., “Integral field spectroscopy of a sample of nearby galaxies: II. Properties of the H?II regions,” Astronomy & Astrophysics, vol. 546, article A2, 28 pages, 2012.
[15]  S. F. Sánchez, N. Cardiel, M. A. W. Verheijen, et al., “PPAK integral field spectroscopy survey of the Orion nebula,” Astronomy & Astrophysics, vol. 465, no. 1, pp. 207–217, 2007.
[16]  A. Fernández-Martín, J. M. Vílchez, E. Pérez-Montero, et al., “Integral field spectroscopy of M1-67. A Wolf-Rayet nebula with luminous blue variable nebula appearance,” Astronomy & Astrophysics, vol. 554, article A104, 15 pages, 2013.
[17]  J. B. Kaler, “A catalog of relative emission line intensities observed in planetary and diffuse nebulae,” Astrophysical Journal Supplement Series, vol. 31, no. 688, p. 517, 1976.
[18]  J. A. Baldwin, G. J. Ferland, P. G. Martin et al., “Physical conditions in the orion nebula and an assessment of its helium abundance,” Astrophysical Journal Letters, vol. 374, no. 2, pp. 580–609, 1991.
[19]  D. E. Osterbrock, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, University Science Books, Mill Valley, Calif, USA, 1989, Research supported by the University of California, John Simon Guggenheim Memorial Foundation, University of Minnesota, et al.
[20]  B. E. J. Pagel, M. G. Edmunds, D. E. Blackwell, M. S. Chun, and G. Smith, “On the composition of H II regions in southern galaxies. I—NGC 300 and 1365,” Monthly Notices of the Royal Astronomical Society, vol. 189, pp. 95–113, 1979.
[21]  R. W. Pogge, J. M. Owen, and B. Atwood, “Imaging spectrophotometry of the Orion Nebula core. I—emission-line mapping and physical conditions,” Astrophysical Journal, vol. 399, no. 1, pp. 147–158, 1992, Erratum in “imaging spectrophotometry of the Orion Nebula core. I—emission-line mapping and physical conditions”, Astrophysical Journal, vol. 408, p. 758, 1993.
[22]  S. Veilleux and D. E. Osterbrock, “Spectral classification of emission-line galaxies,” Astrophysical Journal Supplement Series, vol. 63, pp. 295–310, 1987.
[23]  J. A. Baldwin, M. M. Phillips, and R. Terlevich, “Classification parameters for the emission-line spectra of extragalactic objects,” Publications of the Astronomical Society of the Pacific, vol. 93, pp. 5–19, 1981.
[24]  R. Cid Fernandes, G. Stasińska, A. Mateus, and N. Vale Asari, “A comprehensive classification of galaxies in the Sloan Digital Sky Survey: how to tell true from fake AGN?” Monthly Notices of the Royal Astronomical Society, vol. 413, no. 3, pp. 1687–1699, 2011.
[25]  C. Kehrig, A. Monreal-Ibero, P. Papaderos et al., “The ionized gas in the CALIFA early-type galaxies: I. Mapping two representative cases: NGC 6762 and NGC 5966,” Astronomy & Astrophysics, vol. 540, article A11, 2012.
[26]  G. Kauffmann, T. M. Heckman, C. Tremonti et al., “The host galaxies of active galactic nuclei,” Monthly Notices of the Royal Astronomical Society, vol. 346, no. 4, pp. 1055–1077, 2003.
[27]  L. J. Kewley, M. A. Dopita, R. S. Sutherland, C. A. Heisler, and J. Trevena, “Theoretical modeling of starburst galaxies,” Astrophysical Journal Letters, vol. 556, no. 1, pp. 121–140, 2001.
[28]  L. J. Kewley, B. Groves, G. Kauffmann, and T. Heckman, “The host galaxies and classification of active galactic nuclei,” Monthly Notices of the Royal Astronomical Society, vol. 372, no. 3, pp. 961–976, 2006.
[29]  R. C. Kennicutt Jr., W. C. Keel, and C. A. Blaha, “A comparison of the physical conditions in nuclear, hotspot, and disk H II regions,” Astronomical Journal, vol. 97, pp. 1022–1035, 1989.
[30]  L. C. Ho, A. V. Filippenko, and W. L. W. Sargent, “Properties of H 1 regions in the centers of nearby galaxies,” Astrophysical Journal Letters, vol. 487, no. 2, pp. 579–590, 1997.
[31]  M. G. Allen, B. A. Groves, M. A. Dopita, R. S. Sutherland, and L. J. Kewley, “The mappings III library of fast radiative shock models,” The Astrophysical Journal Supplement Series, vol. 178, no. 1, pp. 20–55, 2008.
[32]  E. M. Levesque, L. J. Kewley, and K. L. Larson, “Theoretical modeling of star-forming galaxies. I. Emission-line diagnostic grids for local and low-metallicity galaxies,” Astronomical Journal, vol. 139, no. 2, pp. 712–727, 2010.
[33]  B. A. Groves, M. A. Dopita, and R. S. Sutherland, “Dusty, radiation pressure-dominated photoionization. II multiwavelength emission line diagnostics for narrow-line regions,” Astrophysical Journal Supplement Series, vol. 153, no. 1, pp. 75–91, 2004.
[34]  R. Cid Fernandes, G. Stasińska, M. S. Schlickmann et al., “Alternative diagnostic diagrams and the “forgotten” population of weak line galaxies in the SDSS,” Monthly Notices of the Royal Astronomical Society, vol. 403, no. 2, pp. 1036–1053, 2010.
[35]  S. F. Sanchez, F. F. Rosales-Ortega, B. Jungwiert, et al., “Mass-metallicity relation explored with CALIFA. I. Is there a dependence on the star-formation rate?” Astronomy & Astrophysics, vol. 554, article A58, 8 pages, 2013.
[36]  P. Papaderos, J. M. Gomes, J. M. Vilchez, et al., “Nebular emission and the Lyman continuum photon escape fraction in CALIFA early-type galaxies,” Astronomy & Astrophysics, vol. 555, article L1, 5 pages, 2013.
[37]  R. C. Kennicutt Jr., “The global schmidt law in star-forming galaxies,” Astrophysical Journal Letters, vol. 498, no. 2, pp. 541–552, 1998.
[38]  M. A. Dopita, L. J. Kewley, C. A. Heisler, and R. S. Sutherland, “A theoretical recalibration of the extragalactic H II region sequence,” Astrophysical Journal Letters, vol. 542, no. 1, pp. 224–234, 2000.
[39]  M. Fioc and B. Rocca-Volmerange, “PEGASE: a UV to NIR spectral evolution model of galaxies: application to the calibration of bright galaxy counts,” Astronomy & Astrophysics, vol. 326, no. 3, pp. 950–962, 1997.
[40]  R. Terlevich, S. Silich, D. Rosa-González, and E. Terlevich, “How old are H II galaxies?” Monthly Notices of the Royal Astronomical Society, vol. 348, no. 4, pp. 1191–1196, 2004.
[41]  S. F. Sánchez, F. F. Rosales-Ortega, R. C. Kennicutt Jr. et al., “PPAK wide-field integral field spectroscopy of NGC 628—I. The largest spectroscopic mosaic on a single galaxy,” Monthly Notices of the Royal Astronomical Society, vol. 410, no. 1, pp. 313–340, 2011.
[42]  F. F. Rosales-Ortega, A. I. Díaz, R. C. Kennicutt Jr., and S. F. Sánchez, “PPAK wide-field Integral field spectroscopy of NGC 628—II. Emission line abundance analysis,” Monthly Notices of the Royal Astronomical Society, vol. 415, no. 3, pp. 2439–2474, 2011.
[43]  E. Mármol-Queraltó, S. F. Sánchez, R. A. Marino, et al., “Integral field spectroscopy of a sample of nearby galaxies,” Astronomy & Astrophysics, vol. 534, article A8, 17 pages, 2011.
[44]  K. Viironen, S. F. Sánchez, E. Marmol-Queraltó et al., “Spatially resolved properties of the grand-design spiral galaxy UGC 9837: a case for high-redshift 2-D observations,” Astronomy & Astrophysics, vol. 538, article A144, 2012.
[45]  F. F. Rosales-Ortega, S. F. Sánchez, J. Iglesias-Páramo, et al., “A new scaling relation for H II regions in spiral galaxies: unveiling the true nature of the mass-metallicity relation,” Astrophysical Journal, vol. 756, no. 2, p. L31, 2012.
[46]  I. Trujillo, G. Rudnick, H.-W. Rix et al., “The luminosity-size and mass-size relations of galaxies out to z~ 31,” Astrophysical Journal Letters, vol. 604, no. 2, pp. 521–533, 2004.
[47]  M. Barden, H. W. Rix, R. S. Somerville, et al., “GEMS: the surface brightness and surface mass density evolution of disk galaxies,” Astrophysical Journal, vol. 635, no. 2, pp. 959–981, 2005.
[48]  I. Trujillo, N. M. F?rster Schreiber, G. Rudnick et al., “The size evolution of galaxies since z~ 3: combining SDSS, GEMS, and FIRES,” Astrophysical Journal Letters, vol. 650, no. 1, pp. 18–41, 2006.
[49]  J. C. Mu?oz-Mateos, A. G. de Paz, S. Boissier et al., “Specific star formation rate profiles in nearby spiral galaxies: quantifying the inside-out formation of disks,” Astrophysical Journal Letters, vol. 658, no. 2, pp. 1006–1026, 2007.
[50]  L. A. MacArthur, J. J. González, and S. Courteau, “Stellar population and kinematic profiles in spiral bulges and discs: population synthesis of integrated spectra,” Monthly Notices of the Royal Astronomical Society, vol. 395, no. 1, pp. 28–63, 2009.
[51]  P. Sánchez-Blázquez, P. Ocvirk, B. K. Gibson, I. Pérez, and R. F. Peletier, “Star formation history of barred disc galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 415, no. 1, pp. 709–731, 2011.
[52]  E. Pérez, R. Cid Fernandes, R. M. González Delgado, et al., “The evolution of galaxies resolved in space and time: a view of inside-out growth from the califa survey,” Astrophysical Journal, vol. 764, no. 1, p. L1, 2013.
[53]  R. M. González Delgado, E. Pérez, R. Cid Fernandes, et al., “The evolution of galaxies resolved in space and time: a view of inside-out growth from the CALIFA survey,” Astrophysical Journal Letters, vol. 764, no. 1, article L1, 6 pages, 2013.
[54]  S. Boissier and N. Prantzos, “Chemo-spectrophotometric evolution of spiral galaxies—I. The model and the Milky Way,” Monthly Notices of the Royal Astronomical Society, vol. 307, no. 4, pp. 857–876, 1999.
[55]  S. Boissier and N. Prantzos, “Chemo-spectrophotometric evolution of spiral galaxies—II. Main properties of present-day disc galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 312, no. 2, pp. 398–416, 2000.
[56]  F. Bresolin, E. Ryan-Weber, R. C. Kennicutt Jr., and Q. Goddard, “The flat oxygen abundance gradient in the extended disk of M83,” Astrophysical Journal, vol. 695, no. 1, pp. 580–595, 2009.
[57]  P. Yoachim, R. Ro?kar, and V. P. Debattista, “Integral field unit spectroscopy of the stellar disk truncation region of NGC 6155,” Astrophysical Journal Letters, vol. 716, no. 1, pp. L4–L8, 2010.
[58]  R. A. Marino, A. Gil de Paz, A. Castillo-Morales, et al., “Integral field spectroscopy and multi-wavelength imaging of the nearby spiral galaxy NGC 5668*: an unusual flattening in metallicity gradient,” Astrophysical Journal, vol. 754, no. 1, p. 61, 2012.
[59]  F. Bresolin, R. C. Kennicutt Jr., and E. Ryan-Weber, “Gas metallicities in the extended disks of NGC 1512 and NGC 3621. Chemical signatures of metal mixing or enriched gas accretion?” Astrophysical Journal, vol. 750, no. 2, article 122, 2012.
[60]  A. Gil de Paz, B. F. Madore, S. Boissier et al., “Discovery of an extended ultraviolet disk in the nearby galaxy NGC 4625,” Astrophysical Journal, vol. 627, no. 1, pp. L29–L32, 2005.
[61]  D. A. Thilker, L. Bianchi, G. Meurer et al., “A search for extended ultraviolet disk (XUV-disk) galaxies in the local universe,” Astrophysical Journal Supplement Series, vol. 173, no. 2, pp. 538–571, 2007.
[62]  M. Vlaji?, J. Bland-Hawthorn, and K. C. Freeman, “The abundance gradient in the extremely faint outer disk of NGC 300,” Astrophysical Journal, vol. 697, no. 1, p. 361, 2009.
[63]  C. ESteban, L. Carigi, M. V. F. Copetti, et al., “NGC 2579 and the carbon and oxygen abundance gradients beyond the solar circle,” Monthly Notices of the Royal Astronomical Society, vol. 433, no. 1, pp. 382–393, 2013.
[64]  B. Husemann, K. Jahnke, S. F. Sánchez, et al., “CALIFA, the Calar Alto Legacy Integral Field Area survey. II. First public data release,” Astronomy & Astrophysics, vol. 549, article A87, 25 pages, 2013.
[65]  M. A. Lara-López, J. Cepa, A. Bongiovanni, et al., “A fundamental plane for field star-forming galaxies,” Astronomy & Astrophysics, vol. 521, article L53, 5 pages, 2010.
[66]  F. Mannucci, G. Cresci, R. Maiolino, A. Marconi, and A. Gnerucci, “A fundamental relation between mass, star formation rate and metallicity in local and high-redshift galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 408, no. 4, pp. 2115–2127, 2010.
[67]  S. F. Sanchez, F. F. Rosales-Ortega, J. Iglesias-Paramo, et al., “A characteristic oxygen abundance gradient in galaxy disks unveiled with CALIFA,” http://arxiv.org/abs/1311.7052.
[68]  T. Tsujimoto, J. Bland-Hawthorn, and K. C. Freeman, “Evidence of early enrichment of the galactic disk by large-scale winds,” Publications of the Astronomical Society of Japan, vol. 62, no. 2, pp. 447–456, 2010.
[69]  F. Matteucci and P. Francois, “Galactic chemical evolution—abundance gradients of individual elements,” Monthly Notices of the Royal Astronomical Society, vol. 239, pp. 885–904, 1989.
[70]  B. E. J. Pagel and B. E. Patchett, “Metal abundances in nearby stars and the chemical history of the solar neighborhood,” Monthly Notices of the Royal Astronomical Society, vol. 172, pp. 13–40, 1975.
[71]  B. K. Gibson, Y. Fenner, A. Renda, D. Kawata, and H.-C. Lee, “Galactic chemical evolution,” Publications of the Astronomical Society of Australia, vol. 20, no. 4, pp. 401–415, 2003.
[72]  R. B. Larson, “Effects of supernovae on the early evolution of galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 169, pp. 229–246, 1974.
[73]  J. Silk, “Dissipative processes in galaxy formation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 11, pp. 4835–4839, 1993.
[74]  S. Veilleux, G. Cecil, and J. Bland-Hawthorn, “Galactic winds,” Annual Review of Astronomy and Astrophysics, vol. 43, pp. 769–826, 2005.
[75]  A. E. Shapley, C. C. Steidel, M. Pettini, and K. L. Adelberger, “Rest-frame ultraviolet spectra of z~ 3 lyman break galaxies,” Astrophysical Journal Letters, vol. 588, no. 1, pp. 65–89, 2003.
[76]  B. J. Weiner, A. L. Coil, J. X. Prochaska, et al., “Ubiquitous outflows in deep2 spectra of star-forming galaxies at z = 1.4,” Astrophysical Journal, vol. 692, no. 1, p. 187, 2009.
[77]  A. Dekel, A. Zolotov, D. Tweed, M. Cacciato, D. Ceverino, and J. R. Primack, “Toy models for galaxy formation versus simulations,” Monthly Notices of the Royal Astronomical Society, vol. 435, pp. 999–1019, 2013.
[78]  S. J. Lilly, C. M. Carollo, A. Pipino, A. Renzini, and Y. Peng, “Gas regulation of galaxies: the evolution of the cosmic specific star formation rate, the metallicity-mass-star-formation rate relation, and the stellar content of halos,” Astrophysical Journal, vol. 772, no. 2, p. 119, 2013.
[79]  L. J. Kewley, D. Rupke, H. Jabran Zahid, M. J. Geller, and E. J. Barton, “Metallicity gradients and gas flows in galaxy pairs,” Astrophysical Journal Letters, vol. 721, no. 1, pp. L48–L52, 2010.
[80]  J. A. Rich, P. Torrey, L. J. Kewley, M. A. Dopita, and D. S. N. Rupke, “An integral field study of abundance gradients in nearby luminous infrared galaxies,” Astrophysical Journal, vol. 753, no. 1, p. 5, 2012.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133