A new generation of wide-field emission-line surveys based on integral field units (IFU) is allowing us to obtain spatially resolved information of the gas-phase emission in nearby late-type galaxies, based on large samples of HII regions and full two-dimensional coverage. These observations are allowing us to discover and characterise abundance differentials between galactic substructures and new scaling relations with global physical properties. Here I review some highlights of our current studies employing this technique: (1) the case study of NGC 628, the largest galaxy ever sampled with an IFU; (2) a statistical approach to the abundance gradients of spiral galaxies, which indicates a universal radial gradient for oxygen abundance; and (3) the discovery of a new scaling relation of HII regions in spiral galaxies, the local mass-metallicity relation of star-forming galaxies. The observational properties and constrains found in local galaxies using this new technique will allow us to interpret the gas-phase abundance of analogue high-z systems. 1. Introduction The study of the interstellar medium (ISM), like many other areas of astrophysics, has undergone a remarkable acceleration in the flow of data over the last few years. Large surveys such as the 2dFGRS [1], SDSS [2], GEMS [3], or COSMOS [4], to name a few, have revolutionised our understanding of the Universe and its constituents as they have enabled us to study the global properties of a large number of objects, allowing for meaningful statistical analysis to be performed, together with a broad coverage of galaxy subtypes and environmental conditions. The nebular emission arising from extragalactic objects has played an important role in this new understanding. Nebular emission lines have been, historically, the main tool at our disposal for the direct measurement of the gas-phase abundance at discrete spatial positions in low redshift galaxies. They trace the young, massive star component in galaxies, illuminating and ionizing cubic kiloparsec-sized volumes of ISM. Metals are a fundamental parameter for cooling mechanisms in the intergalactic and interstellar medium, star-formation, stellar physics, and planet formation. Measuring the chemical abundance in individual galaxies and galactic substructures, over a wide range of redshifts, is a crucial step to understanding the chemical evolution and nucleosynthesis at different epochs, since the heavy atomic nuclei trace the evolution of past and current stellar generations. This evolution is dictated by a complex array of parameters, including
References
[1]
S. Folkes, S. Ronen, I. Price et al., “The 2dF galaxy redshift survey: spectral types and luminosity functions,” Monthly Notices of the Royal Astronomical Society, vol. 308, no. 2, pp. 459–472, 1999.
[2]
D. G. York, J. Adelman, J. E. Anderson et al., et al., “The sloan digital sky survey: technical summary,” The Astronomical Journal, vol. 120, no. 3, article 1579, 2000.
[3]
H.-W. Rix, M. Barden, S. V. W. Beckwith et al., “GEMS: galaxy evolution from morphologies and SEDs,” Astrophysical Journal, vol. 152, no. 2, pp. 163–173, 2004.
[4]
N. Scoville, H. Aussel, M. Brusa et al., “The cosmic evolution survey (COSMOS): overview,” Astrophysical Journal, Supplement Series, vol. 172, no. 1, pp. 1–8, 2007.
[5]
T. Nagao, R. Maiolino, and A. Marconi, “Gas metallicity diagnostics in star-forming galaxies,” Astronomy and Astrophysics, vol. 459, no. 1, pp. 85–101, 2006.
[6]
R. Maiolino, T. Nagao, A. Grazian et al., “AMAZE: I. The evolution of the mass metallicity relation at z > 3,” Astronomy and Astrophysics, vol. 488, no. 2, pp. 463–479, 2008.
[7]
R. C. Kennicutt and P. W. Hodge, “H II regions in NGC 628. III. H-alpha luminosities and the luminosity function,” The Astrophysical Journal, vol. 241, article 573, 1980.
[8]
J. Belley and J.-R. Roy, “The abundance gradients across the spiral galaxies NGC 628 and NGC 6946,” Astrophysical Journal, vol. 78, no. 1, pp. 61–85, 1992.
[9]
P. A. Scowen, J. J. Hester, J. S. Gallagher, E. Wilcots, and T. W. Idt, “HST WFPC-2 observations of typical star formation in M101,” in Proceedings of the 189th AAS Meeting, vol. 28, p. 1360, Bulletin of the American Astronomical Society, 1996.
[10]
J. R. Roy and J.-R. Walsh, “Imaging spectroscopy of H II regions in the barred Spiral galaxy NGC,” Monthly Notices of the Royal Astronomical Society, vol. 234, article 977, 1988.
[11]
R. C. Kennicutt Jr. and D. R. Garnett, “The composition gradient in M101 revisited. I. H II region spectra and excitation properties,” Astrophysical Journal Letters, vol. 456, no. 2, pp. 504–518, 1996.
[12]
M. L. McCall, P. M. Rybski, and G. A. Shields, “The chemistry of galaxies. I: the nature of giant extragalactic HII regions,” The Astrophysical Journal, vol. 57, no. 1, 1985.
[13]
L. Van Zee, J. J. Salzer, M. P. Haynes, A. A. O'Donoghue, and T. J. Balonek, “Spectroscopy of outlying HII regions in spiral galaxies: abundances and radial gradients,” Astronomical Journal, vol. 116, no. 6, pp. 2805–2833, 1998.
[14]
M. Castellanos, A. I. Díaz, and E. Terlevich, “A comprehensive study of reported high-metallicity giant HII regions. I: detailed abundance analysis,” Monthly Notices of the Royal Astronomical Society, vol. 329, no. 2, pp. 315–335, 2002.
[15]
M. Castellanos, á. I. Díaz, and G. Tenorio-Tagle, “On the large escape of ionizing radiation from giant extragalactic HII regions,” Astrophysical Journal Letters, vol. 565, no. 2, pp. L79–L82, 2002.
[16]
J. Moustakas and R. C. Kennicutt Jr., “An integrated spectrophotometric survey of nearby star-forming galaxies,” Astrophysical Journal, vol. 164, no. 1, pp. 81–98, 2006.
[17]
R. Bacon, Y. Copin, G. Monnet et al., “The SAURON project. I: the panoramic integral-field spectrograph,” Monthly Notices of the Royal Astronomical Society, vol. 326, no. 1, pp. 23–35, 2001.
[18]
P. T. de Zeeuw, M. Bureau, E. Emsellem et al., “The SAURON project. II: sample and early results,” Monthly Notices of the Royal Astronomical Society, vol. 329, no. 3, pp. 513–530, 2002.
[19]
K. Ganda, J. Falcón-Barroso, R. F. Peletier et al., “Late-type galaxies observed with SAURON: two-dimensional stellar and emission-line kinematics of 18 spirals,” Monthly Notices of the Royal Astronomical Society, vol. 367, no. 1, pp. 46–78, 2006.
[20]
F. F. Rosales-Ortega, R. C. Kennicutt, S. F. Sánchez et al., “PINGS: the PPAK IFS nearby galaxies survey,” Monthly Notices of the Royal Astronomical Society, vol. 405, pp. 735–758, 2010.
[21]
E. Mármol-Queraltó, S. F. Mármol, R. A. Marino et al., “Integral field spectroscopy of a sample of nearby galaxies: I. sample, observations, and data reduction,” Astronomy and Astrophysics, vol. 534, article A8, 2011.
[22]
S. F. Sanchez, R. C. Kennicutt, A. Gil de Paz et al., et al., “CALIFA, the calar alto legacy integral field area survey,” Astronomy and Astrophysics, vol. 538, article 8, 2012.
[23]
B. Husemann, K. Jahnke, S. F. Sanchez et al., et al., “CALIFA, the calar alto legacy integral field area survey,” Astronomy & Astrophysics, vol. 549, article 87, 25 pages, 2013.
[24]
M. A. Bershady, M. A. W. Verheijen, R. A. Swaters, D. R. Andersen, K. B. Westfall, and T. Martinsson, “The diskmass survey. I: overview,” Astrophysical Journal Letters, vol. 716, no. 1, pp. 198–233, 2010.
[25]
M. M. Roth, A. Kelz, T. Fechner et al., “PMAS: the Potsdam multi-aperture spectrophotometer. I: design, manufacture, and performance,” Publications of the Astronomical Society of the Pacific, vol. 117, no. 832, pp. 620–642, 2005.
[26]
M. A. W. Verheijen, M. A. Bershady, D. R. Andersen et al., “The Disk Mass project; science case for a new PMAS IFU module,” Astronomische Nachrichten, vol. 325, no. 2, pp. 151–154, 2004.
[27]
A. Kelz, M. A. W. Verheijen, M. M. Roth et al., “PMAS: the potsdam multi-aperture spectrophotometer. II: the wide integral field unit PPak,” Publications of the Astronomical Society of the Pacific, vol. 118, no. 839, pp. 129–145, 2006.
[28]
M. Pettini and B. E. J. Pagel, “[O III]/[N II] as an abundance indicator at high redshift,” Monthly Notices of the Royal Astronomical Society, vol. 348, no. 3, pp. L59–L63, 2004.
[29]
S. F. Sánchez, F. F. Rosales-Ortega, R. C. Kennicutt et al., “PPAK Wide-field integral field spectroscopy of NGC 628. I: the largest spectroscopic mosaic on a single galaxy,” Monthly Notices of the Royal Astronomical Society, vol. 410, no. 1, pp. 313–340, 2011.
[30]
F. F. Rosales-Ortega, A. I. Díaz, R. C. Kennicutt, and S. F. Sánchez, “PPAK wide-field integral field spectroscopy of NGC628. II: emission line abundance analysis,” Monthly Notices of the Royal Astronomical Society, vol. 415, no. 3, pp. 2439–2474, 2011.
[31]
S. F. Sánchez, “Techniques for reducing fiber-fed and integral-field spectroscopy data: an implementation on R3D,” Astronomische Nachrichten, vol. 327, p. 850, 2006.
[32]
Y. Li, F. Bresolin, and R. C. J. Kennicutt, “Testing for azimuthal abundance gradients in M101,” The Astrophysical Journal, vol. 766, article 17, 2013.
[33]
Andrievsky, S. M. Bersier, D. Kovtyukh et al., “Using Cepheids to determine the galactic abundance gradient. II: towards the galactic center,” Astronomy and Astrophysics, vol. 384, pp. 140–144, 2002.
[34]
S. Pedicelli, G. Bono, B. Lemasle et al., “On the metallicity gradient of the Galactic disk,” Astronomy and Astrophysics, vol. 504, no. 1, pp. 81–86, 2009.
[35]
J. R. D. Lépine, P. Cruz, J. Scarano et al., “Overlapping abundance gradients and azimuthal gradients related to the spiral structure of the Galaxy,” Monthly Notices of the Royal Astronomical Society, vol. 417, no. 1, pp. 698–708, 2011.
[36]
B. Lemasle, P. Francois, K. Genovali et al., et al., “Galactic abundance gradients from Cepheids: alpha and heavy elements in the outer disk,” In Press. http://xxx.tau.ac.il/abs/1308.3249.
[37]
J.-M. Deharveng, R. Jedrzejewski, P. Crane, M. J. Disney, and B. Rocca-Volmerange, “Blue stars in the center of the S0 galaxy NGC 5102,” Astronomy and Astrophysics, vol. 326, no. 2, pp. 528–536, 1997.
[38]
F. F. Rosales-Ortega, S. F. Sanchez, J. Iglesias-Paramo et al., “A new scaling relation for HII regions in spiral galaxies: unveiling the true nature of the mass-metallicity relation,” The Astrophysical Journal, vol. 756, article L31, 2012.
[39]
S. F. Sánchez, F. F. Rosales-Ortega, R. A. Marino et al., et al., “Integral field spectroscopy of a sample of nearby galaxies,” Astronomy and Astrophysics, vol. 546, article A2, 2012.
[40]
S. F. Sánchez, N. Cardiel, M. A. W. Verheijen, S. Pedraz, and G. Covone, “Morphologies and stellar populations of galaxies in the core of Abell 2218,” Monthly Notices of the Royal Astronomical Society, vol. 376, no. 1, pp. 125–150, 2007.
[41]
J. Lequeux, M. Peimbert, J. F. Rayo, A. Serrano, and S. Torres-Peimbert, “Chemical composition and evolution of irregular and blue compact galaxies,” Astronomy and Astrophysics, vol. 80, pp. 155–166, 1979.
[42]
C. A. Tremonti, T. M. Heckman, G. Kauffmann et al., “The origin of the mass-metallicity relation: insights from 53,000 star-forming galaxies in the sloan digital sky survey,” Astrophysical Journal Letters, vol. 613, no. 2, pp. 898–913, 2004.
[43]
E. F. Bell and R. S. de Jong, “Stellar mass-to-light ratios and the Tully-Fisher relation,” Astrophysical Journal Letters, vol. 550, no. 1, pp. 212–229, 2001.
[44]
R. C. Kennicutt, “Star formation in galaxies along the Hubble sequence,” ARA Stronomy and Astrophysics, vol. 36, article 189, 1998.
[45]
L. J. Kewley and S. L. Ellison, “Metallicity calibrations and the mass-metallicity relation for star-forming galaxies,” Astrophysical Journal Letters, vol. 681, no. 2, pp. 1183–1204, 2008.
[46]
M. A. Lara-López, J. Cepa, A. Bongiovanni et al., “A fundamental plane for field star-forming galaxies,” Astronomy and Astrophysics, vol. 521, no. 2, article L53, 2010.
[47]
F. Mannucci, G. Cresci, R. Maiolino, A. Marconi, and A. Gnerucci, “A fundamental relation between mass, star formation rate and metallicity in local and high-redshift galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 408, no. 4, pp. 2115–2127, 2010.
[48]
L. Hunt, L. Magrini, D. Galli et al., et al., “Scaling relations of metallicity, stellar mass and star formation rate in metal-poor starbursts. I: a fundamental plane,” Monthly Notices of the Royal Astronomical Society, vol. 427, no. 2, pp. 906–918, 2012.
[49]
S. F. Sánchez, F. F. Rosales-Ortega, B. Jungwiert et al., et al., “Mass-metallicity relation explored with CALIFA,” Astronomy and Astrophysics, vol. 554, article 58, 2013.
[50]
E. Perez, R. Cid Fernandes, R. M. Gonzalez Delgado et al., et al., “The evolution of galaxies resolved in space and time: an inside-out growth view from the CALIFA survey,” The Astrophysical Journal Letters, vol. 764, no. 1, 2013.
[51]
F. F. Rosales-Ortega, “PINGSoft: an IDL visualisation and manipulation tool for integral field spectroscopic data,” New Astronomy, vol. 16, pp. 220–228, 2011.
[52]
F. F. Rosales-Ortega, S. Arribas, and L. Colina, “Integrated spectra extraction based on signal-to-noise optimization using integral field spectroscopy,” Astronomy and Astrophysics, vol. 539, article A73, 2012.
[53]
G. A. Blanc, T. Weinzirl, M. Song et al., et al., “The virus-P exploration of nearby galaxies (venga): survey design, data processing, and spectral analysis methods,” The Astronomical Journal, vol. 145, article 138, 2013.
[54]
A. L. Heiderman, N. J. I. Evans, K. Gebhardt et al., “The VIRUS-P Investigation of the extreme environments of starbursts (VIXENS): survey and first results,” in Proceedings of the Frank N. Bash Symposium on New Horizons in Astronomy, 2011.
[55]
G. A. Blanc, A. Heiderman, K. Gebhardt, N. J. Evans, and J. Adams, “The spatially resolved star formation law from integral field spectroscopy: virus-p observations of NGC 5194,” Astrophysical Journal Letters, vol. 704, no. 1, pp. 842–862, 2009.
[56]
G. A. Blanc, A. Schruba, N. J. I. Evans et al., et al., “The virus-P exploration of nearby glaxies (venga): the X co gradient in NGC 628,” The Astrophysical Journal, vol. 764, article 117, 2013.
[57]
S. M. Croom, J. S. Lawrence, J. Bland-Hawthorn et al., “The Sydney-AAO Multi-object Integral field spectrograph,” Monthly Notices of the Royal Astronomical Society, vol. 421, no. 1, pp. 872–893, 2012.
[58]
R. Bacon, S. M. Bauer, R. Bower et al., et al., “The second generation VLT instrument MUSE: science drivers and instrument design,” in Groundbased Instrumentation for Astronomy, A. F. M. Moorwood and I. Masanori, Eds., Proceedings of the SPIE, pp. 1145–1149, Observatoire de Lyon, Lyon, France, 2004.
[59]
A. M. N. Ferguson, J. S. Gallagher, and R. F. G. Wyse, “The Extreme Outer Regions of Disk Galaxies. I. Chemical Abundances of HII Regions,” Astronomical Journal, vol. 116, article 673, 1998.