全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Are Wolf-Rayet Stars Able to Pollute the Interstellar Medium of Galaxies? Results from Integral Field Spectroscopy

DOI: 10.1155/2013/837392

Full-Text   Cite this paper   Add to My Lib

Abstract:

We investigate the spatial distribution of chemical abundances in a sample of low metallicity Wolf-Rayet (WR) galaxies selected from the SDSS. We used the integral field spectroscopy technique in the optical spectral range (3700??–6850??) with PMAS attached to the CAHA 3.5?m telescope. Our statistical analysis of the spatial distributions of O/H and N/O, as derived using the direct method or strong-line parameters consistent with it, indicates that metallicity is homogeneous in five out of the six analysed objects in scales of the order of several kpc. Only in the object WR404 is a gradient of metallicity found in the direction of the low surface brightness tail. In contrast, we found an overabundance of N/O in spatial scales of the order of hundreds of pc associated with or close to the positions of the WR stars in 4 out of the 6 galaxies. We exclude possible hydrodynamical causes, such as the metal-poor gas inflow, for this local pollution by means of the analysis of the mass-metallicity relation (MZR) and mass-nitrogen-to-oxygen relation (MNOR) for the WR galaxies catalogued in the SDSS. 1. Introduction Wolf-Rayet (WR) galaxies host very bright episodes of star formation characterized by the emission of broad WR bumps in their optical spectrum [1]. The two main bumps in the optical range are the blue bump, centered at a wavelength of 4650??, produced by the emission from N V, N III, C III/C IV, and He II, and associated with WC and WN stars, and the red bump which is fainter, centered at 5800??, produced mainly by C III and C IV, and associated with WC stars. The lines making up these bumps originate in the dense stellar winds from WR stars ejecting metals into the interstellar medium (ISM). The number of known WR galaxies has tremendously increased from the discovery of the first one (He 2–10: [2]), with different published catalogs [3–6], until the list of WR galaxies in the Sloan Digital Sky Survey (SDSS) by Brinchmann et al. [7] with around 570 objects with the identification of the WR bumps in their integrated spectra. There is increasing evidence that the most challenging problems for this kind of objects appear in the low metallicity galaxies. Although it is well documented that the number of WR stars and the intensity of the WR bumps are higher for higher metallicities [8], the values found in some low metallicity H II galaxies, such as IZw18 [9], are claimed to be much higher than those predicted by synthesis population models (e.g., [10]). Among the other important open issues regarding WR galaxies is the chemical enrichment of the ISM

References

[1]  D. E. Osterbrock and R. D. Cohen, “Two galaxies with Wolf-Rayet features in their spectra,” Astrophysical Journal, vol. 261, pp. 64–69, 1982.
[2]  D. A. Allen, A. E. Wright, and W. M. Goss, “The dwarf emission galaxy He 2.10,” Monthly Notices of the Royal Astronomical Society, vol. 177, p. 91, 1976.
[3]  P. S. Conti, C. D. Garmany, and P. Massey, “Spectroscopic studies of Wolf-Rayet stars. V-Optical spectrophotometry of the emission lines in Small Magellanic Cloud stars,” The Astrophysical Journal, vol. 341, pp. 113–119, 1989.
[4]  D. Schaerer, T. Contini, and M. Pindao, “New catalogue of Wolf-Rayet galaxies and high-excitation extra-galactic HII regions,” Astronomy & Astrophysics, vol. 136, no. 1, pp. 35–52, 1999.
[5]  N. G. Guseva, Y. I. Izotov, and T. X. Thuan, “A spectroscopic study of a large sample of Wolf-Rayet galaxies,” Astrophysical Journal Letters, vol. 531, no. 2, pp. 776–803, 2000.
[6]  W. Zhang, X. Kong, C. Li, H.-Y. Zhou, and F.-Z. Cheng, “Wolf-Rayet galaxies in the Sloan Digital Sky Survey: the metallicity dependence of the initial mass function,” Astrophysical Journal Letters, vol. 655, no. 2 I, pp. 851–862, 2007.
[7]  J. Brinchmann, D. Kunth, and F. Durret, “Galaxies with Wolf-Rayet signatures in the low-redshift Universe,” Astronomy & Astrophysics, vol. 485, pp. 657–677, 2008.
[8]  P. A. Crowther, “Physical properties of Wolf-Rayet stars,” Annual Review of Astronomy & Astrophysics, vol. 45, pp. 177–219, 2007.
[9]  F. Legrand, D. Kunth, J.-R. Roy, J. M. Mas-Hesse, and J. R. Walsh, “Detection of WR stars in the metal-poor starburst galaxy IZw 18,” Astronomy & Astrophysics, vol. 326, no. 3, pp. L17–L20, 1997.
[10]  R. M. G. Delgado, M. Cervi?o, L. P. Martins, C. Leitherer, and P. H. Hauschildt, “Evolutionary stellar population synthesis at high spectral resolution: optical wavelengths,” Monthly Notices of the Royal Astronomical Society, vol. 357, no. 3, pp. 945–960, 2005.
[11]  J. M. Vílchez and C. Esteban, “Wolf Rayet stars and interrelations with other massive stars in galaxies,” in Proceedings of the IAU Symposium, vol. 143, Bali, Indonesia, 1991.
[12]  C. Esteban and J. M. Vílchez, “On the chemodynamics of Wolf-Rayet ring nebulae—NGC 6888,” The Astrophysical Journal, vol. 390, pp. 536–540, 1992.
[13]  A. Fernández-Martín, D. Martín-Gordón, J. M. Vílchez, et al., “Ionization structure and chemical abundances of the Wolf-Rayet nebula NGC?6888 with integral field spectroscopy,” Astronomy & Astrophysics, vol. 541, article A119, 2012.
[14]  S. Pustilnik, A. Kniazev, A. Pramskij et al., “HS 0837 + 4717—a metal-deficient blue compact galaxy with large nitrogen excess,” Astronomy & Astrophysics, vol. 419, no. 2, pp. 469–484, 2004.
[15]  A. R. López-Sánchez, C. Esteban, J. García-Rojas, M. Peimbert, and M. Rodríguez, “The localized chemical pollution in NGC 5253 revisited: results from deep echelle spectrophotometry,” The Astrophysical Journal, vol. 656, p. 168, 2007.
[16]  G. F. H?gele, E. Pérez-Montero, á. I. Díaz, E. Terlevich, and R. Terlevich, “The temperature and ionization structure of the emitting gas in H II galaxies: implications for the accuracy of abundance determinations,” Monthly Notices of the Royal Astronomical Society, vol. 372, no. 1, pp. 293–312, 2006.
[17]  G. F. H?gele, á. I. Díaz, E. Terlevich, R. Terlevich, E. Pérez-Montero, and M. V. Cardaci, “Precision abundance analysis of bright H ii galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 383, pp. 209–229, 2008.
[18]  R. Amorín, E. Pérez-Montero, J. M. Vílchez, and P. Papaderos, “The star formation history and metal content of the green peas. New detailed gtc-osiris spectrophotometry of three galaxies,” The Astrophysical Journal, vol. 749, article 185, 2012.
[19]  M. Mollá, J. M. Vílchez, M. Gavilán, and A. I. Díaz, “The nitrogen-to-oxygen evolution in galaxies: the role of the star formation rate,” Monthly Notices of the Royal Astronomical Society, vol. 372, pp. 1069–1080, 2006.
[20]  C. Kehrig, J. M. Vílchez, and S. F. Sánchez, “The interplay between ionized gas and massive stars in the HII galaxy IIZw70: integral field spectroscopy with PMAS,” Astronomy & Astrophysics, vol. 477, pp. 813–822, 2008.
[21]  E. Pérez-Montero, J. M. Vílchez, B. Cedrés, et al., “Integral field spectroscopy of nitrogen overabundant blue compact dwarf galaxies,” Astronomy & Astrophysics, vol. 532, article A141, 2011.
[22]  C. Kehrig, E. Perez-Montero, J. M. Vílchez, et al., “Uncovering multiple Wolf-Rayet star clusters and the ionized ISM in Mrk 178: the closest metal-poor Wolf-Rayet H?ii galaxy,” Monthly Notices of the Royal Astronomical Society, vol. 432, pp. 2731–2745, 2013.
[23]  C. Kehrig, M. S. Oey, P. A. Crowther et al., “Gemini GMOS spectroscopy of HeII nebulae in M 33,” Astronomy & Astrophysics, vol. 526, no. 16, article A128, 2011.
[24]  M. Shirazi and J. Brinchmann, “Strongly star forming galaxies in the local Universe with nebular Heiiλ4686 emission,” Monthly Notices of the Royal Astronomical Society, vol. 421, no. 2, pp. 1043–1063, 2012.
[25]  á. R. López-Sánchez, A. Mesa-Delgado, L. López-Martín, and C. Esteban, “The ionized gas at the centre of IC10: a possible localized chemical pollution by Wolf-Rayet stars,” Monthly Notices of the Royal Astronomical Society, vol. 411, no. 3, pp. 2076–2092, 2011.
[26]  B. L. James, Y. G. Tsamis, J. R. Walsh, M. J. Barlow, and M. S. Westmoquette, “The Lyman break analogue Haro 11: spatially resolved chemodynamics with VLT FLAMES,” Monthly Notices of the Royal Astronomical Society, vol. 430, pp. 2097–2112, 2013.
[27]  A. Monreal-Ibero, J. R. Walsh, and J. M. Vílchez, “The ionized gas in the central region of NGC 5253. 2D mapping of the physical and chemical properties,” Astronomy & Astrophysics, vol. 544, article A60, 2012.
[28]  M. S. Westmoquette, B. James, A. Monreal-Ibero, and J. R. Walsh, “Piecing together the puzzle of NGC 5253: abundances, kinematics and WR stars,” Astronomy & Astrophysics, vol. 550, article A88, 2013.
[29]  J. K?ppen and G. Hensler, “Effects of episodic gas infall on the chemical abundances in galaxies,” Astronomy & Astrophysics, vol. 434, no. 2, pp. 531–541, 2005.
[30]  B. L. James, Y. G. Tsamis, M. J. Barlow, J. R. Walsh, and M. S. Westmoquette, “The merging dwarf galaxy UM 448: chemodynamics of the ionized gas from VLT integral field spectroscopy,” Monthly Notices of the Royal Astronomical Society, vol. 428, no. 1, pp. 86–102, 2013.
[31]  J. A. Baldwin, M. M. Phillips, and R. Terlevich, “Classification parameters for the emission-line spectra of extragalactic objects,” Publications of the Astronomical Society of the Pacific, vol. 93, pp. 5–19, 1981.
[32]  M. M. Roth, T. Fechner, D. Wolter et al., “Commissioning of the CCD231 4K×4K detector for PMAS,” in High Energy, Optical, and Infrared Detectors for Astronomy IV, vol. 7742 of Proceedings of SPIE, June 2010.
[33]  S. F. Sánchez, “Techniques for reducing fiber-fed and integral-field spectroscopy data: An implementation on R3D,” Astronomische Nachrichten, vol. 327, pp. 850–861, 2006.
[34]  C. Sandin, T. Becker, M. M. Roth, et al., “P3D: a general data-reduction tool for fiber-fed integral-field spectrographs,” Astronomy & Astrophysics, vol. 515, article A35, 2010.
[35]  A. Kelz, M. A. W. Verheijen, M. M. Roth et al., “PMAS: the potsdam multi-aperture spectrophotometer—II. The wide integral field unit PPak,” Publications of the Astronomical Society of the Pacific, vol. 118, no. 839, pp. 129–145, 2006.
[36]  A. I. Diaz, “Hydrogen absorption line profiles of ionizing star clusters,” Monthly Notices of the Royal Astronomical Society, vol. 231, pp. 57–67, 1988.
[37]  G. Bruzual and S. Charlot, “Stellar population synthesis at the resolution of 2003,” Monthly Notices of the Royal Astronomical Society, vol. 344, no. 4, pp. 1000–1028, 2003.
[38]  R. Cid Fernandes, Q. Gu, J. Melnick et al., “The star formation history of Seyfert 2 nuclei,” Monthly Notices of the Royal Astronomical Society, vol. 355, no. 1, pp. 273–296, 2004.
[39]  A. Mateus, L. Sodré Jr., R. C. Fernandes, G. Stasińska, W. Schoenell, and J. M. Gomes, “Semi-empirical analysis of Sloan Digital Sky Survey galaxies—II. The bimodality of the galaxy population revisited,” Monthly Notices of the Royal Astronomical Society, vol. 370, no. 2, pp. 721–737, 2006.
[40]  E. Pérez-Montero and A. I. Díaz, “Line temperatures and elemental abundances in H II galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 346, no. 1, pp. 105–118, 2003.
[41]  P. J. Storey and D. G. Hummer, “Recombination line intensities for hydrogenic ions-IV. Total recombination coefficients and machine-readable tables for Z=1 to 8,” Monthly Notices of the Royal Astronomical Society, vol. 272, pp. 41–48, 1995.
[42]  J. A. Cardelli, G. C. Clayton, and J. S. Mathis, “The relationship between infrared, optical, and ultraviolet extinction,” The Astrophysical Journal, vol. 345, pp. 245–256, 1989.
[43]  A. Y. Kniazev, E. K. Grebel, L. Hao, M. A. Strauss, J. Brinkmann, and M. Fukugita, “Discovery of eight new extremely metal-poor galaxies in the sloan digital sky survey,” Astrophysical Journal Letters, vol. 593, no. 2, pp. L73–L76, 2003.
[44]  G. Denicoló, R. Terlevich, and E. Terlevich, “New light on the search for low-metallicity galaxies—I. The N2 calibrator,” Monthly Notices of the Royal Astronomical Society, vol. 330, no. 1, pp. 69–74, 2002.
[45]  E. Pérez-Montero and A. I. Díaz, “A comparative analysis of empirical calibrators for nebular metallicity,” Monthly Notices of the Royal Astronomical Society, vol. 361, no. 3, pp. 1063–1076, 2005.
[46]  D. Alloin, S. Collin-Souffrin, M. Joly, and L. Vigroux, “Nitrogen and oxygen abundances in galaxies,” Astronomy & Astrophysics, vol. 78, pp. 200–216, 1979.
[47]  M. Pettini and B. E. J. Pagel, “[O III]/[N II] as an abundance indicator at high redshift,” Monthly Notices of the Royal Astronomical Society, vol. 348, no. 3, pp. L59–L63, 2004.
[48]  E. Pérez-Montero and T. Contini, “The impact of the nitrogen-to-oxygen ratio on ionized nebula diagnostics based on [N ii] emission lines,” Monthly Notices of the Royal Astronomical Society, vol. 398, no. 2, pp. 949–960, 2009.
[49]  H. W. Lilliefors, “On the Kolmogorov-Smirnov test for normality with mean and variance unknown,” Journal of the American Statistical Association, vol. 62, pp. 399–402, 1967.
[50]  M. Mollá and R. Terlevich, “Modelling the composition of a young star cluster ejecta,” Monthly Notices of the Royal Astronomical Society, vol. 425, pp. 1696–1708, 2012.
[51]  G. Tenorio-Tagle, “Interstellar matter hydrodynamics and the dispersal and mixing of heavy elements,” Astronomical Journal, vol. 111, no. 4, pp. 1641–1650, 1996.
[52]  J. C. Raymond, “Shock waves in the interstellar medium,” Astrophysical Journal, vol. 39, pp. 1–27, 1979.
[53]  M. G. Edmunds, “General constraints on the effect of gas flows in the chemical evolution of galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 246, p. 678, 1990.
[54]  R. O. Amorín, E. Pérez-Montero, and J. M. Vílchez, “On the oxygen and nitrogen chemical abundances and the evolution of the “green pea” galaxies,” The Astrophysical Journal Letters, vol. 715, article L128, 2010.
[55]  E. Pérez-Montero, T. Contini, F. Lamareille, et al., “The cosmic evolution of oxygen and nitrogen abundances in star-forming galaxies over the past 10 Gyr,” Astronomy & Astrophysics, vol. 549, article A25, 2013.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413