全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Anomalous Microwave Emission from Star Forming Regions

DOI: 10.1155/2013/390287

Full-Text   Cite this paper   Add to My Lib

Abstract:

The evidence for microwave emission from spinning dust grains has been strengthened considerably by its detection in a number of discrete astrophysical objects associated with star formation. These detections, in combination with statistical constraints on its presence on large angular scales in the diffuse ISM, have provided strong observational confirmation of an emission mechanism still referred to as anomalous. This emission has a peaked spectrum with a maximum in the microwave band; the present review discusses the continuum radio emission mechanisms which can contribute to this region of the electromagnetic spectrum, collects published results on the prevalence of anomalous microwave emission in a variety of star formation regions, presents the overall conclusions that may be drawn from the detections so far, and discusses the prospects for future research on the anomalous microwave emission attributed to spinning dust within star forming regions. 1. Introduction The interstellar medium (ISM) of our galaxy and others is volume dominated by a small number of components. These components are differentiated by their temperature, ionization state, and density: the cold neutral medium (CNM) with hydrogen density ?cm?3 and temperature 100?K, containing very little ionized material and no molecular gas; the warm neutral medium (WNM) with hydrogen density ?cm?3 and temperatures of 5000–104?K, a low ionization fraction and no molecular component; the warm ionized medium (WIM), which has much in common with the WNM except that it is almost entirely ionized; as well as the low density hot ionized medium (HIM), with ?cm?3 and temperatures of ?K, which was first proposed by McKee and Ostriker ([1]; see also [2]) as the result of supernova shocks acting on the ambient ISM, and lead to the phrase “the violent ISM” being coined [3]. Between them these components make up three phases, where they exist with densities regulated by pressure equilibrium: the hot phase of the HIM, the cooler combined warm phase of the WIM and WNM, and the cold CNM phase [4]. In addition to these three phases there also exist quasistatic, long-lived components with pressures far in excess of the ambient ISM, which have a much smaller volume filling factor but represent the bulk of mass in the galaxy. These giant cloud components are virialized and gravitationally bound, and their increased pressure is a result of an ongoing internal struggle to produce pressure gradients which will balance their own self-gravity. Unlike the ambient ISM phases, these clouds are largely molecular with

References

[1]  C. F. McKee and J. P. Ostriker, “A theory of the interstellar medium—three components regulated by supernova explosions in an inhomogeneous substrate,” The Astrophysical Journal, vol. 218, pp. 148–169, 1977.
[2]  S. R. Kulkarni and C. Heiles, “The atomic component,” Astrophysics and Space Science Library, vol. 134, pp. 87–122, 1987.
[3]  R. McCray and T. P. Snow Jr., “The violent interstellar medium,” Annual Review of Astronomy & Astrophysics, vol. 17, pp. 213–240, 1979.
[4]  D. J. Hollenbach and A. G. G. Tielens M, “Photodissociation regions in the interstellar medium of galaxies,” Reviews of Modern Physics, vol. 71, pp. 173–230, 1999.
[5]  R. B. Larson, “Turbulence and star formation in molecular clouds,” Monthly Notices of the Royal Astronomical Society, vol. 194, pp. 809–826, 1981.
[6]  M. M. Mac Low and R. S. Klessen, “Control of star formation by supersonic turbulence,” Reviews of Modern Physics, vol. 76, pp. 125–194, 2004.
[7]  E. M. Leitch, A. C. S. Readhead, T. J. Pearson, and S. T. Myers, “An anomalous component of galactic emission,” Astrophysical Journal Letters, vol. 486, no. 1, pp. L23–L26, 1997.
[8]  B. T. Draine, “Interstellar dust grains,” Annual Review of Astronomy & Astrophysics, vol. 41, pp. 241–289, 2003.
[9]  A. Leger and J. L. Puget, “Identification of the “unidentified” IR emission features of interstellar dust?” Astronomy & Astrophysics, vol. 137, no. 1, pp. L5–L8, 1984.
[10]  V. Ossenkopf and T. Henning, “Dust opacities for protostellar cores,” Astronomy & Astrophysics, vol. 291, no. 3, pp. 943–959, 1994.
[11]  J. S. Greaves and W. K. M. Rice, “Do all Sun-like stars have planets? Inferences from the disc mass reservoirs of Class 0 protostars,” Monthly Notices of the Royal Astronomical Society, vol. 412, pp. L88–L92, 2011.
[12]  D. Burstein and C. Heiles, “H I, galaxy counts, and reddening—variation in the gas-to-dust ratio, the extinction at high galactic latitudes, and a new method for determining galactic reddening,” The Astrophysical Journal, vol. 225, pp. 40–55, 1978.
[13]  B. T. Draine and A. Lazarian, “Electric dipole radiation from spinning dust grains,” Astrophysical Journal Letters, vol. 508, no. 1, pp. 157–179, 1998.
[14]  L. Oster, “Emission and absorption of thermal radio radiation,” The Astrophysical Journal, vol. 134, pp. 1010–1013, 1961.
[15]  L. Oster, “Free-free emission in the radio-frequency range,” The Astronomical Journal, vol. 66, p. 50, 1961.
[16]  W. Altenhoff, P. G. Mezger, H. Wendker, and G. Westerhout, “Me?programme bei der Wellenl?nge 11?cm am 25?m-Radioteleskop Stockert,” Ver?ffentlichungen der K?niglichen Sternw?rte zu Bonn, no. 59, p. 48, 1960.
[17]  S. Kurtz, “Hypercompact HII regions,” in Proceedings of the International Astronomical Union (IAUS '05), Symposium 227, pp. 111–119, 2005.
[18]  R. Ignace and E. Churchwell, “Free-free spectral energy distributions of hierarchically clumped H II regions,” The Astrophysical Journal, vol. 610, no. 1, pp. 351–360, 2004.
[19]  C. Chiuderi and G. T. Ciamponi, “Polytropic models of radio stars,” Astronomy & Astrophysics, vol. 69, pp. 333–339, 1978.
[20]  S. P. Reynolds, “Continuum spectra of collimated, ionized stellar winds,” The Astrophysical Journal, vol. 304, pp. 713–720, 1986.
[21]  N. Panagia and M. Felli, “The spectrum of the free-free radiation from extended envelopes,” Astronomy & Astrophysics, vol. 39, pp. 1–5, 1975.
[22]  S. P. Reynolds, “Continuum spectra of collimated, ionized stellar winds,” The Astrophysical Journal, vol. 304, pp. 713–720, 1986.
[23]  R. L. Brown, F. J. Lockman, and G. R. Knapp, “Radio recombination lines,” Annual Review of Astronomy & Astrophysics, vol. 16, pp. 445–485, 1978.
[24]  F. J. Lockman, D. J. Pisano, and G. J. Howard, “Detection of 130 “diffuse” galactic H II regions,” Astrophysical Journal Letters, vol. 472, no. 1, pp. 173–182, 1996.
[25]  R. A. Gaume, W. M. Goss, H. R. Dickel, T. L. Wilson, and K. J. Johnston, “The NGC 7538 IRS 1 region of star formation: observations of the H66a recombination line with a spatial resolution of 300 AU,” Astrophysical Journal Letters, vol. 438, no. 2, pp. 776–783, 1995.
[26]  G. F. Smoot, “Galactic Free-free and H-alpha Emission,” http://arxiv.org/abs/astro-ph/9801121.
[27]  R. Dong and B. T. Draine, “Hα and free-free emission from the warm ionized medium,” The Astrophysical Journal, vol. 727, p. 35, 2011.
[28]  R. H. Hildebrand, “The determination of cloud masses and dust characteristics from submillimetre thermal emission,” Quarterly Journal of the Royal Astronomical Society, vol. 24, pp. 267–282, 1983.
[29]  J. Rodmann, T. Henning, C. J. Chandler, L. G. Mundy, and D. J. Wilner, “Large dust particles in disks around T Tauri stars,” Astronomy & Astrophysics, vol. 446, no. 1, pp. 211–221, 2006.
[30]  D. Lommen, C. M. Wright, S. T. Maddison, et al., “Investigating grain growth in disks around southern T Tauri stars at millimetre wavelengths,” Astronomy & Astrophysics, vol. 462, pp. 211–220, 2007.
[31]  J. B. Pollack, D. Hollenbach, S. Beckwith, D. P. Simonelli, T. Roush, and W. Fong, “Composition and radiative properties of grains in molecular clouds and accretion disks,” Astrophysical Journal Letters, vol. 421, no. 2, pp. 615–639, 1994.
[32]  J. S. Mathis, W. Rumpl, and K. H. Nordsieck, “The size distribution of interstellar grains,” The Astrophysical Journal, vol. 217, pp. 425–433, 1977.
[33]  B. T. Draine, “On the submillimeter opacity of protoplanetary disks,” The Astrophysical Journal, vol. 636, no. 2, pp. 1114–1120, 2006.
[34]  H. Tanaka, Y. Himeno, and S. Ida, “Dust growth and settling in protoplanetary disks and disk spectral energy distributions. I. Laminar disks,” Astrophysical Journal Letters, vol. 625, no. 1, pp. 414–426, 2005.
[35]  F. Boulanger and M. Perault, “Diffuse infrared emission from the galaxy. I—solar neighborhood,” The Astrophysical Journal, vol. 330, pp. 964–985, 1988.
[36]  L. D. Anderson, A. Zavagno, L. Deharveng, et al., “The dust properties of bubble H?II regions as seen by Herschel,” Astronomy & Astrophysics, vol. 542, article A10, 2012.
[37]  T. Preibisch, V. Ossenkopf, H. W. Yorke, and T. Henning, “The influence of ice-coated grains on protostellar spectra,” Astronomy & Astrophysics, vol. 279, pp. 577–588, 1993.
[38]  B. T. Draine and H. M. Lee, “Optical properties of interstellar graphite and silicate grains,” The Astrophysical Journal, vol. 285, pp. 89–108, 1984.
[39]  E. Churchwell, M. G. Wolfire, and D. O. S. Wood, “The infrared emission from dust surrounding newly formed O stars,” Astrophysical Journal Letters, vol. 354, no. 1, pp. 247–261, 1990.
[40]  L. F. Rodriguez, J. Marti, J. Canto, J. M. Moran, and S. Curiel, “Possible radio spectral indices from inhomogeneous free-free sources,” Revista Mexicana De Astronomia Y Astrofisica, vol. 25, no. 1, pp. 23–229, 1993.
[41]  P. Andre, D. Ward-Thompson, and M. Barsony, in Proceedings of the Protostars and Planets Conference, p. 59.
[42]  G. H. Herbig, “The spectra of Be- and Ae-TYPE stars associated with nebulosity,” The Astrophysical Journal, vol. 4, p. 337, 1960.
[43]  G. H. Herbig, “Eruptive phenomena in early stellar evolution,” The Astrophysical Journal, vol. 217, pp. 693–715, 1977.
[44]  E. S. Parsamian, “Catalogue of cometary nebulae discovered on Palomar maps,” Izv. Akad. Nauk Armyan, vol. 18, pp. 146–148, 1965.
[45]  B. Reipurth, G. Herbig, and C. Aspin, “The multiple pre-main-sequence system HBC 515 in L1622,” The Astronomical Journal, vol. 139, no. 4, pp. 1668–1680, 2010.
[46]  D. J. Hollenbach, in Astronomical Society of the Pacific Conference Series (ASPC '90), vol. 12, p. 167, 1990.
[47]  R. Timmermann, F. Bertoldi, C. M. Wright et al., “H2 infrared line emission from S140: a warm PDR,” Astronomy & Astrophysics, vol. 315, no. 2, pp. L281–L284, 1996.
[48]  D. P. Finkbeiner, D. J. Schlegel, C. Frank, and C. Heiles, “Tentative detection of electric dipole emission from rapidly rotating dust grains,” Astrophysical Journal Letters, vol. 566, no. 2, pp. 898–904, 2002.
[49]  C. Dickinson, S. Casassus, J. L. Pineda, T. J. Pearson, A. C. S. Readhead, and R. D. Davies, “An upper limit on anomalous dust emission at 31 GHz in the diffuse cloud [LPH96] 201.663+1.643,” The Astrophysical Journal, vol. 643, no. 2, pp. L111–L114, 2006.
[50]  A. Scaife, D. A. Green, R. A. Battye, et al., “Constraints on spinning dust towards Galactic targets with the Very Small Array: a tentative detection of excess microwave emission towards 3C396,” Monthly Notices of the Royal Astronomical Society, vol. 377, pp. L69–L73, 2007.
[51]  J. E. Gaustad, P. R. McCullough, W. Rosing, and D. Van Buren, “A robotic wide-angle Hα survey of the southern sky,” Publications of the Astronomical Society of the Pacific, vol. 113, no. 789, pp. 1326–1348, 2001.
[52]  P. R. McCullough and R. R. Chen, “An alternative to spinning dust for the microwave emission of LPH 201.663+1.643: an Ultracompact H II Region,” The Astrophysical Journal Letters, vol. 566, no. 1, article L45, 2002.
[53]  C. Dickinson, R. D. Davies, L. Bronfman et al., “CBI limits on 31 GHz excess emission in southern H ii regions,” Monthly Notices of the Royal Astronomical Society, vol. 379, no. 1, pp. 297–307, 2007.
[54]  A. M. M. Scaife, N. Hurley-Walker, M. L. Davies, et al., “AMI limits on 15-GHz excess emission in northern H ii regions,” Monthly Notices of the Royal Astronomical Society, vol. 385, pp. 809–822, 2008.
[55]  C. Dickinson, R. D. Davies, and R. J. Davis, “Towards a free-free template for CMB foregrounds,” Monthly Notices of the Royal Astronomical Society, vol. 341, pp. 369–384, 2003.
[56]  E. Churchwell, “Ultra-compact H II regions and massive star formation,” Annual Review of Astronomy and Astrophysics, vol. 40, pp. 27–62, 2002.
[57]  B. G. Elmegreen, “Triggered star formation,” EAS Publications Series, vol. 51, pp. 45–58, 2011.
[58]  L. Deharveng, F. Schuller, L. D. Anderson, et al., “A gallery of bubbles. The nature of the bubbles observed by Spitzerand what ATLASGAL tells us about the surrounding neutral material,” Astronomy & Astrophysics, vol. 523, article A6, 2010.
[59]  A. Zavagno, L. Deharveng, F. Comerón et al., “Triggered massive-star formation on the borders of Galactic H II regions II. Evidence for the collect and collapse process around RCW 79,” Astronomy & Astrophysics, vol. 446, no. 1, pp. 171–184, 2006.
[60]  R. Choudhury, B. Mookerjea, and H. C. Bhatt, “Triggered star formation and young stellar population in bright-rimmed cloud SFO 38,” Astrophysical Journal Letters, vol. 717, no. 2, pp. 1067–1083, 2010.
[61]  M. Todorovi?, R. D. Davies, C. Dickinson, et al., “A 33-GHz very small array survey of the Galactic plane from ° to 46°,” Monthly Notices of the Royal Astronomical Society, vol. 406, pp. 1629–1643, 2010.
[62]  F. J. Lockman, “A survey of radio H II regions in the northern sky,” The Astrophysical Journal Supplement Series, vol. 71, pp. 469–479, 1989.
[63]  S. Sharpless, “A catalogue of H II regions,” The Astrophysical Journal Supplement Series, vol. 4, p. 257, 1959.
[64]  C. Dickinson, et al., “Anomalous microwave emission from the H II region RCW175,” The Astrophysical Journal, vol. 690, no. 2, article 1585, 2009.
[65]  S. J. Carey, F. O. Clark, M. P. Egan, S. D. Price, R. F. Snipman, and T. A. Kuchar, “The physical properties of the Midcourse Space Experiment galactic infrared-dark clouds,” Astrophysical Journal Letters, vol. 508, no. 2, pp. 721–728, 1998.
[66]  M. P. Egan, R. F. Shipman, S. D. Price, S. J. Carey, F. O. Clark, and M. Cohen, “A population of cold cores in the galactic plane,” Astrophysical Journal Letters, vol. 494, no. 2, pp. L199–L202, 1998.
[67]  M. Perault, et al., “First ISOCAM images of the Milky Way,” Astronomy & Astrophysics, vol. 315, p. L165, 1996.
[68]  B. T. Lynds, “Catalogue of dark nebulae,” The Astrophysical Journal, vol. 7, p. 1, 1962.
[69]  J. Kauffmann and T. Pillai, “How many infrared dark clouds can form massive stars and clusters?” The Astrophysical Journal Letters, vol. 723, no. 1, article L7, 2010.
[70]  D. Teyssier, P. Hennebelle, and M. Perault, “Radio-millimetre investigation of galactic infrared dark clouds,” Astronomy & Astrophysics, vol. 382, pp. 624–638, 2002.
[71]  S. J. Carey, P. A. Feldman, R. O. Redman, M. P. Egan, J. M. MacLeod, and S. D. Price, “Submillimeter observations of Midcourse Space Experiment galactic infrared-dark clouds,” The Astrophysical Journal, vol. 543, no. 2, pp. L157–L161, 2000.
[72]  J. M. Rathborne, J. M. Jackson, R. Simon, and Q. Zhang, “Infrared dark clouds as precursors to star clusters,” Astrophysics and Space Science, vol. 324, pp. 155–162, 2009.
[73]  N. Peretto and G. A. Fuller, “A statistical study of the mass and density structure of infrared dark clouds,” Astrophysical Journal Letters, vol. 723, no. 1, pp. 555–562, 2010.
[74]  L. A. Wilcock, J. M. Kirk, D. Stamatellos, et al., “The initial conditions of high-mass star formation: radiative transfer models of IRDCs seen in the Herschel Hi-GAL survey,” Astronomy & Astrophysics, vol. 526, article A159, 2011.
[75]  O. Miettinen, M. Hennemann, and H. Linz, “Deuterium fractionation and the degree of ionisation in massive clumps within infrared dark clouds,” Astronomy & Astrophysics, vol. 534, article A134, 2011.
[76]  C. T. Tibbs, R. Paladini, M. Compiegne, M. C, et al., “A multi-wavelength investigation of RCW175: an HII region harboring spinning dust emission,” The Astrophysical Journal, vol. 754, no. 2, article 94, 2012.
[77]  M. P. Hobson and J. E. Baldwin, “Markov-chain Monte Carlo approach to the design of multilayer thin-film optical coatings,” Applied Optics, vol. 43, pp. 2651–2660, 2004.
[78]  K. Arvidsson and C. R. Kerton, “Submillimeter and molecular views of three galactic ring-like H II regions,” The Astronomical Journal, vol. 141, no. 5, article 153, 2011.
[79]  C. Gordon and R. Trotta, “Bayesian calibrated significance levels applied to the spectral tilt and hemispherical asymmetry,” Monthly Notices of the Royal Astronomical Society, vol. 382, pp. 1859–1863, 2007.
[80]  R. D. Davies, C. Dickinson, A. J. Banday, T. R. Jaffe, K. M. Górski, and R. J. Davis, “A determination of the spectra of Galactic components observed by the Wilkinson Microwave Anisotropy Probe,” Monthly Notices of the Royal Astronomical Society, vol. 370, pp. 1125–1139, 2006.
[81]  D. J. Schlegel, D. P. Finkbeiner, and M. Davis, “Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds,” Astrophysical Journal Letters, vol. 500, no. 2, pp. 525–553, 1998.
[82]  C. Dickinson, “Anomalous Emission from HII regions,” http://arxiv.org/abs/0808.0473.
[83]  K. L. Luhman, J. R. Stauffer, A. A. Muench et al., “A census of the young cluster IC 348,” Astrophysical Journal Letters, vol. 593, no. 2, pp. 1093–1115, 2003.
[84]  C. J. Lada, J. Alves, and E. A. Lada, “Near-infrared imaging of embedded clusters: NGC 1333,” The Astronomical Journal, vol. 111, no. 5, pp. 1964–1976, 1996.
[85]  B. A. Wilking, M. R. Meyer, T. P. Greene, A. Mikhail, and G. Carlson, “Low-mass stars and substellar objects in the NGC 1333 molecular cloud,” The Astronomical Journal, vol. 127, no. 2, pp. 1131–1146, 2004.
[86]  K. C. Steenbrugge, J. H. J. De Bruijne, R. Hoogerwerf, and P. T. De Zeeuw, “Radial velocities of early-type stars in the Perseus OB2 association,” Astronomy & Astrophysics, vol. 402, no. 2, pp. 587–605, 2003.
[87]  G. Meynet and A. Maeder, “Stellar evolution with rotation V. Changes in all the outputs of massive star models,” Astronomy & Astrophysics, vol. 361, no. 1, pp. 101–120, 2000.
[88]  J. Hatchell, J. S. Richer, G. A. Fuller, C. J. Qualtrough, E. F. Ladd, and C. J. Chandler, “Star formation in Perseus: clusters, filaments and the conditions for star formation,” Astronomy & Astrophysics, vol. 440, no. 1, pp. 151–161, 2005.
[89]  J. Hatchell, G. A. Fuller, and J. S. Richer, “Star formation in Perseus III. Outflows,” Astronomy & Astrophysics, vol. 472, no. 1, pp. 187–198, 2007.
[90]  J. Hatchell, G. A. Fuller, J. S. Richer, T. J. Harries, and E. F. Ladd, “Star formation in Perseus II. SEDs, classification, and lifetimes,” Astronomy & Astrophysics, vol. 468, no. 3, pp. 1009–1024, 2007.
[91]  R. A. Watson, R. Rebolo, J. A. Rubi?o-Martín et al., “Detection of anomalous microwave emission in the perseus molecular cloud with the COSMOSOMAS experiment,” The Astrophysical Journal Letters, vol. 624, no. 2, article L89, 2005.
[92]  C. T. Tibbs, R. A. Watson, C. Dickinson and, et al., “Very Small Array observations of the anomalous microwave emission in the Perseus region,” Monthly Notices of the Royal Astronomical Society, vol. 402, pp. 1969–1979, 2010.
[93]  P. J. Encrenaz, “A new source of intense molecular emission in the rho ophiuchi complex,” The Astrophysical Journal, vol. 189, p. L135, 1974.
[94]  E. S. Battistelli, R. Rebolo, J. A. Rubi?o-Martín et al., “Polarization observations of the anomalous microwave emission in the perseus molecular complex with the COSMOSOMAS experiment,” The Astrophysical Journal Letters, vol. 645, no. 2, article L141, 2006.
[95]  C. T. Tibbs, N. Flagey, R. Paladini, et al., “Spitzer characterization of dust in an anomalous emission region: the Perseus cloud,” Monthly Notices of the Royal Astronomical Society, vol. 418, pp. 1889–1900, 2011.
[96]  C. A. Kulesa, A. L. Hungerford, C. K. Walker, X. Zhang, and A. P. Lane, “Large-scale CO and [C I] emission in the ρ ophiuchi molecular cloud,” The Astrophysical Journal, vol. 625, no. 1, pp. 194–209, 2005.
[97]  K. E. Young, M. L. Enoch, N. J. Evans II, et al., “Bolocam survey for 1.1 mm dust continuum emission in the c2d legacy clouds. II. Ophiuchus,” The Astrophysical Journal, vol. 644, no. 1, article 326, 2006.
[98]  M. A. C. Perryman, L. Lindegren, J. Kovalevsky, E. Hoeg, et al., “The HIPPARCOS Catalogue,” Astronomy & Astrophysics, vol. 323, pp. L49–L52, 1997.
[99]  R. Liseau, G. J. White, B. Larsson et al., “Looking at the bright side of the ρ Ophiuchi dark cloud. Far infrared spectrophotometric observations of the ρ Oph cloud with the ISO-LWS,” Astronomy & Astrophysics, vol. 344, pp. 342–354, 1999.
[100]  E. Habart, F. Boulanger, L. Verstraete, G. Pineau des Forêts, E. Falgarone, and A. Abergel, “H2 infrared line emission across the bright side of the ρ ophiuchi main cloud,” Astronomy & Astrophysics, vol. 397, no. 2, pp. 623–634, 2003.
[101]  A. Wootten, R. Snell, and A. E. Glassgold, “The determination of electron abundances in interstellar clouds,” The Astrophysical Journal, vol. 234, pp. 876–880, 1979.
[102]  A. Wootten, N. J. Evans, N. J. II, R. Snell, and P. vanden Bout, “Molecular abundance variations in interstellar clouds,” The Astrophysical Journal, vol. 225, pp. L143–L148, 1978.
[103]  E. F. van Dishoeck and J. H. Black, “Interstellar C2, CH, and CN in translucent molecular clouds,” The Astrophysical Journal, vol. 340, pp. 273–297, 1989.
[104]  M. Kámierczak, M. R. Schmidt, A. Bondar, and J. KreLowski, “Abundances and rotational temperatures of the C2 interstellar molecule towards six reddened early-type stars,” Monthly Notices of the Royal Astronomical Society, vol. 402, pp. 2548–2558, 2010.
[105]  C. W. Lee, P. C. Myers, and M. Tafalla, “A survey for infall motions toward starless cores. II. CS (2-1) and N2H+ (1-0) mapping observations,” The Astrophysical Journal, vol. 136, no. 2, p. 703, 2001.
[106]  Y. S. Park, C. W. Lee, and P. C. Myers, “A CO Survey toward Starless Cores,” The Astrophysical Journal, vol. 152, no. 1, article 81, 2004.
[107]  B. Reipurth, S. T. Megeath, J. Bally, and J. Walawender, “The L1617 and L1622 cometary clouds in orion,” in Handbook of Star Forming Regions, Volume I, p. 782, 2008.
[108]  G. H. Herbig and K. R. Bell, cels.book, 1988.
[109]  B. A. Wilson, T. M. Dame, M. R. W. Masheder, and P. Thaddeus, “A uniform CO survey of the molecular clouds in Orion and Monoceros,” Astronomy & Astrophysics, vol. 430, no. 2, pp. 523–539, 2005.
[110]  J. Knude, C. Fabricius, E. H?g, and V. Makarov, “Distances of absorbing features in the LDN 1622 direction: an application of Tycho-2 photometry and Michigan Classification,” Astronomy & Astrophysics, vol. 392, no. 3, pp. 1069–1079, 2002.
[111]  R. F. Garrison, “The σ orionis clustering,” Publications of the Astronomical Society of the Pacific, vol. 79, no. 470, p. 433, 1967.
[112]  R. J. Maddalena, M. Morris, J. Moscowitz, and P. Thaddeus, “The large system of molecular clouds in Orion and Monoceros,” The Astrophysical Journal, vol. 303, pp. 375–391, 1986.
[113]  W. H. Sherry, F. M. Walter, S. J. Wolk, and N. R. Adams, “Main-sequence fitting distance to the σ Ori cluster,” The Astronomical Journal, vol. 135, no. 4, pp. 1616–1623, 2008.
[114]  J. Bally, J. Walawender, B. Reipurth, and S. T. Megeath, “Outflows and young stars in orion's large cometary clouds L1622and L1634,” The Astronomical Journal, vol. 137, no. 4, p. 3843, 2009.
[115]  M. Kun, Z. Balog, N. Mizuno et al., “Lynds 1622: a nearby star-forming cloud projected on Orion B?” Monthly Notices of the Royal Astronomical Society, vol. 391, pp. 84–94, 2008.
[116]  S. Casassus, G. F. Cabrera, F. Forster, T. J. Pearson, A. C. S. Readhead, and C. Dickinson, “Morphological analysis of the centimeter-wave continuum in the dark cloud LDN 1622,” The Astrophysical Journal, vol. 639, no. 2, article 951, 2006.
[117]  S. Padin, M. C. Shepherd, J. K. Cartwright, et al., “The cosmic background imager,” Publications of the Astronomical Society of the Pacific, vol. 114, pp. 83–97, 2002.
[118]  B. S. Mason, T. Robishaw, C. Heiles, D. Finkbeiner, and C. Dickinson, “A limit on the polarized anomalous microwave emission of lynds 1622,” Astrophysical Journal Letters, vol. 697, no. 2, pp. 1187–1193, 2009.
[119]  S. Iglesias-Groth, “Hydrogenated fulleranes and the anomalous microwave emission of the dark cloud LDN 1622,” Monthly Notices of the Royal Astronomical Society, vol. 368, pp. 1925–1930, 2006.
[120]  C. C. Henderson and P. A. Cahill, “C60H2: synthesis of the simplest C60 hydrocarbon derivative,” Science, vol. 259, no. 5103, pp. 1885–1887, 1993.
[121]  J. Cami, J. Bernard-Salas, E. Peeters, and S. E. Malek, “Fullerenes in circumstellar and interstellar environments,” in Proceedings of the International Astronomical Union (IAUS '11), vol. 7 of Symposium S280, pp. 216–227, 2011.
[122]  A. Garcia-Hernandez, “On the formation of fullerenes in H-rich circumstellar environments,” in Proceedings of the International Astronomical Union (IAUS '11), Symposium 280, 2011.
[123]  A. M. M. Scaife, N. Hurley-Walker, D. A. Green, et al., “An excess of emission in the dark cloud LDN1111 with the Arcminute Microkelvin Imager,” Monthly Notices of the Royal Astronomical Society, vol. 394, pp. L46–L50, 2009.
[124]  A. E. Visser, J. S. Richer, and C. J. Chandler, “A SCUBA survey of compact dark Lynds clouds,” Monthly Notices of the Royal Astronomical Society, vol. 323, no. 2, pp. 257–269, 2001.
[125]  A. M. M. Scaife, N. Hurley-Walker, D. A. Green, et al., “AMI observations of Lynds dark nebulae: further evidence for anomalous cm-wave emission,” Monthly Notices of the Royal Astronomical Society, vol. 400, pp. 1394–1412, 2009.
[126]  A. M. M. Scaife, M. Scaife, B. Nikolic, et al., “Microwave observations of spinning dust emission in NGC6946,” Monthly Notices of the Royal Astronomical Society, vol. 406, pp. L45–L49, 2010.
[127]  A. M. M. Scaife, D. A. Green, G. G. Pooley, et al., “High-resolution AMI Large Array imaging of spinning dust sources: spatially correlated 8 μm emission and evidence of a stellar wind in L675,” Monthly Notices of the Royal Astronomical Society, vol. 403, pp. L46–L50, 2010.
[128]  C. Dickinson, S. Casassus, R. D. Davies, et al., “Infrared-correlated 31-GHz radio emission from Orion East,” Monthly Notices of the Royal Astronomical Society, vol. 407, pp. 2223–2229, 2010.
[129]  T. L. Wilson and R. T. Rood, “Abundances in the interstellar medium,” Annual Review of Astronomy & Astrophysics, vol. 32, no. 1, pp. 191–226, 1994.
[130]  M. Vidal, S. Casassus, C. Dickinson, et al., “Dust-correlated cm wavelength continuum emission from translucent clouds ζOph and LDN 1780,” Monthly Notices of the Royal Astronomical Society, vol. 414, pp. 2424–2435, 2011.
[131]  P. Castellanos, S. Casassus, C. Dickinson, et al., “Dust-correlated centimetre-wave radiation from the M78 reflection nebula,” Monthly Notices of the Royal Astronomical Society, vol. 411, no. 2, pp. 1137–1150, 2011.
[132]  D. A. Green, “A revised Galactic supernova remnant catalogue,” Bulletin of the Astronomical Society of India, vol. 37, pp. 45–61, 2009.
[133]  W. T. Reach, J. Rho, A. Tappe, et al., “A Spitzer Space Telescope Infrared Survey of supernova remnants in the inner Galaxy,” The Astronomical Journal, vol. 131, no. 3, article 1479, 2006.
[134]  S. Casassus, C. Dickinson, K. Cleary and, et al., “Centimetre-wave continuum radiation from the ρ Ophiuchi molecular cloud,” Monthly Notices of the Royal Astronomical Society, vol. 391, pp. 1075–1090, 2008.
[135]  S. Casassus, L. ?. Nyman, C. Dickinson, and T. J. Pearson, “A centimetre-wave excess over free-free emission in planetary nebulae,” Monthly Notices of the Royal Astronomical Society, vol. 382, no. 4, pp. 1607–1622, 2007.
[136]  B. M. Pazderska, M. P. Gawroński, R. Feiler, et al., “Survey of planetary nebulae at 30 GHz with OCRA-p,” Astronomy & Astrophysics, vol. 498, pp. 463–470, 2009.
[137]  G. Umana, P. Leto, C. Trigilio et al., “Millimeter observations of planetary nebulae,” Astronomy & Astrophysics, vol. 482, no. 2, pp. 529–534, 2008.
[138]  E. J. Murphy, G. Helou, J. J. Condon, et al., “The detection of anomalous dust emission in the nearby galaxy ngc 6946,” The Astrophysical Journal Letters, vol. 709, no. 2, article L108, 2010.
[139]  T. Murphy, E. M. Sadler, R. D. Ekers, et al., “The Australia Telescope 20 GHz Survey: the source catalogue,” Monthly Notices of the Royal Astronomical Society, vol. 402, pp. 2403–2423., 2010.
[140]  R. C. Kennicutt Jr., L. Armus, G. Bendo, et al., “SINGS: The SIRTF Nearby Galaxies Survey,” Publications of the Astronomical Society of the Pacific, vol. 115, pp. 928–952, 2003.
[141]  F. Walter, E. Brinks, W. J. G. De Blok et al., “Things: the Hi nearby galaxy survay,” The Astronomical Journal, vol. 136, no. 6, pp. 2563–2647, 2008.
[142]  L. F. Rodriguez, “Radio observations of outflows,” Bulletin of the American Astronomical Society, vol. 21, p. 786, 1989.
[143]  G. Anglada, “Centimeter continuum emission from outflow sources,” in Revista Mexicana de Astronomia y Astrofisica Serie de Conferencias, vol. 1, p. 67, 1995.
[144]  P. Andre, T. Montmerle, and E. D. Feigelson, “A VLA survey of radio-emitting young stars in the Rho Ophiuchi dark cloud,” The Astronomical Journal, vol. 93, pp. 1182–1198, 1987.
[145]  D. Stamatellos, D. Ward-Thompson, A. P. Whitworth, and S. Bontemps, “A VLA search for young protostars embedded in dense cores,” Astronomy & Astrophysics, vol. 462, no. 2, pp. 677–682, 2007.
[146]  L. F. Rodriguez and J. Canto, “Stellar winds and molecular clouds—a search for ionized stellar winds,” Revista Mexicana De Astronomia Y Astrofisica, vol. 8, no. 2, p. 163, 1983.
[147]  J. H. Bieging, M. Cohen, and P. R. Schwartz, “VLA observations of T Tauri stars. II—a luminosity-limited survey of Taurus-Auriga,” The Astrophysical Journal, vol. 282, pp. 699–708, 1984.
[148]  S. H. Pravdo, L. F. Rodriguez, S. Curiel et al., “Detection of radio continuum emission from Herbig-Haro objects 1 and 2 and from their central exciting source,” The Astrophysical Journal, vol. 293, pp. L35–L38, 1985.
[149]  L. F. Rodriguez and B. Reipurth, “VLA detection of the exciting sources of HH 83, HH 117, HH 124, HH 192, HH 300, HH 366, and HH 375,” Revista Mexicana De Astronomia Y Astrofisica, vol. 34, p. 13, 1998.
[150]  P. Andre, F. Motte, and A. Bacmann, “Discovery of an extremely young accreting protostar in Taurus,” The Astrophysical Journal Letters, vol. 513, no. 1, article L57, 1999.
[151]  A. M. M. Scaife, J. Hatchell, M. Davies, et al., “AMI-LA radio continuum observations of Spitzer c2d small clouds and cores: Perseus region,” Monthly Notices of the Royal Astronomical Society, vol. 415, pp. 893–910, 2011.
[152]  A. M. M. Scaife, E. I. Curtis, M. Davies, et al., “AMI Large Array radio continuum observations of Spitzer c2d small clouds and cores,” Monthly Notices of the Royal Astronomical Society, vol. 410, no. 4, pp. 2662–2678, 2011.
[153]  A. M. M. Scaife, J. Hatchell, R. E. Ainsworth, et al., “AMI-LA radio continuum observations of Spitzer c2d small clouds and cores: Serpens region,” Monthly Notices of the Royal Astronomical Society, vol. 420, pp. 1019–1033, 2012.
[154]  S. Curiel, L. F. Rodriguez, J. Bohigas, M. Roth, J. Canto, and J. M. Torrelles, “Extended radio continuum emission associated with V645 CYG and MWC1080,” Astrophysical Letters and Communications, vol. 27, pp. 299–309, 1989.
[155]  K. H. A. Winkler and M. J. Newman, “Formation of solar-type stars in spherical symmetry. I—the key role of the accretion shock,” The Astrophysical Journal, vol. 236, pp. 201–211, 1980.
[156]  P. Cassen and A. Moosman, “On the formation of protostellar disks,” Icarus, vol. 48, no. 3, pp. 353–376, 1981.
[157]  S. Curiel, J. Canto, and L. F. Rodriguez, “A model for the thermal radio continuum emission produced by a shock wave and its application to the Herbig-Haro objects 1 and 2,” Revista Mexicana de Astronomia y Astrofisica, vol. 14, pp. 595–602, 1987.
[158]  L. F. Rodriguez and B. Reipurth, “VLA detection of the exciting sources of HH 34, HH 114, and HH 199,” Revista Mexicana De Astronomia Y Astrofisica, vol. 32, pp. 27–33, 1996.
[159]  G. Anglada, “Radio Jets in young stellar objects,” in Astronomical Society of the Pacific Conference Series (ASPC '96), vol. 93, University of Barcelona, Barcelona, Spain, July 1996.
[160]  G. Anglada, E. Villuendas, R. Estalella et al., “Spectral indices of centimeter continuum sources in star-forming regions: implications on the nature of the outflow exciting sources,” Astronomical Journal, vol. 116, no. 6, pp. 2953–2964, 1998.
[161]  M. Simon, M. Felli, L. Cassar, J. Fischer, and M. Massi, “Infrared line and radio continuum emission of circumstellar ionized regions,” The Astrophysical Journal, vol. 266, pp. 623–645, 1983.
[162]  T. L. Bourke, A. Crapsi, P. C. Myers et al., “Discovery of a low-mass bipolar molecular outflow from L1014-IRS with the submillimeter array,” The Astrophysical Journal Letters, vol. 633, no. 2, article L129, 2005.
[163]  A. Crapsi, C. H. DeVries, T. L. Huard, et al., “Dynamical and chemical properties of the "starless" core L1014,” Astronomy & Astrophysics, vol. 439, pp. 1023–1032, 2005.
[164]  A. Scaife, “Radio Emission from Young Stellar Objects,” AstRv, vol. 7, Article ID 040000, 2012.
[165]  M. M. Dunham and E. I. Vorobyov, “Resolving the luminosity problem in low-mass star formation,” The Astrophysical Journal, vol. 747, no. 1, article 52, 2012.
[166]  A. G. G. Tielens M, S. Hony, C. van Kerckhoven, and E. Peeters, “Interstellar and circumstellar PAHs,” ESA-SP 427, 579, 1999.
[167]  A. G. G. Tielens M, “Interstellar polycyclic aromatic hydrocarbon molecules,” Annual Review of Astronomy & Astrophysics, vol. 46, pp. 289–337, 2008.
[168]  E. Peeters, H. W. W. Spoon, and A. G. G. M. Tielens, “Polycyclic aromatic hydrocarbons as a tracer of star formation?” The Astrophysical Journal, vol. 613, no. 2, pp. 986–1003, 2004.
[169]  A. P. Jones, A. G. G. M. Tielens, and D. J. Hollenbach, “Grain shattering in shocks: the interstellar grain size distribution,” Astrophysical Journal Letters, vol. 469, no. 2, pp. 740–764, 1996.
[170]  B. T. Draine, “Photoelectric heating of interstellar gas,” The Astrophysical Journal, vol. 36, pp. 595–619, 1978.
[171]  H. J. Habing, “The interstellar radiation density between 912 A and 2400 A,” Bulletin of the Astronomical Institutes of the Netherlands, vol. 19, p. 421, 1968.
[172]  N. Ysard and L. Verstraete, “The long-wavelength emission of interstellar PAHs: characterizing the spinning dust contribution,” Astronomy & Astrophysics, vol. 509, article A12, 2010.
[173]  B. T. Draine and A. Li, “Infrared emission from interstellar dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era,” The Astrophysical Journal, vol. 657, no. 2, article 810, 2007.
[174]  S. Casassus, A. C. S. Readhead, T. J. Pearson, L. ?. Nyman, M. C. Shepherd, and L. Bronfman, “Anomalous radio emission from dust in the Helix,” The Astrophysical Journal, vol. 603, no. 2, pp. 599–610, 2004.
[175]  J. W. M. Baars, R. Genzel, I. I. K. Pauliny-Toth, and A. Witzel, “The absolute spectrum of CAS A—an accurate flux density scale and a set of secondary calibrators,” Astronomy & Astrophysics, vol. 61, no. 1, pp. 99–106, 1977.
[176]  N. Rees, “Comments on the absolute flux density scale at low radio frequencies,” Monthly Notices of the Royal Astronomical Society, vol. 243, pp. 637–639, 1990.
[177]  Y. A. Hafez, R. D. Davies, R. J. Davis, et al., “Radio source calibration for the very small array and other cosmic microwave background instruments at around 30 GHz,” Monthly Notices of the Royal Astronomical Society, vol. 388, no. 4, pp. 1775–1786, 2008.
[178]  J. L. Weiland, N. Odegard, R. S. Hill, et al., “seven-year wilkinson microwave anisotropy probe (wmap *) observations: planets and celestial calibration sources,” The Astrophysical Journal, vol. 192, no. 2, article 19, 2011.
[179]  D. J. Rudy, D. O. Muhleman, and G. L. Berge, “Mapping of the 2 and 6cm thermal emission from mars using the very large array,” Bulletin of the American Astronomical Society, vol. 19, p. 834, 1987.
[180]  D. Johnstone, J. Di Francesco, B. Matthews, et al., “The science case for building a band 1 receiver suite for ALMA,” http://arxiv.org/abs/0910.1609.
[181]  B. Acke and M. E. Van Den Ancker, “ISO spectroscopy of disks around Herbig Ae/Be stars,” Astronomy & Astrophysics, vol. 426, no. 1, pp. 151–170, 2004.
[182]  R. R. Rafikov, “Microwave emission from spinning dust in circumstellar disks,” The Astrophysical Journal, vol. 646, pp. 288–296, 2006.
[183]  C. R. Purcell, M. G. Hoare, and P. Diamond, “The CORNISH Survey of the galactic plane,” in Astronomical 2008 Society of the Pacific Conference Series (ASPC '08), vol. 387, p. 389, 2008.
[184]  M. Thompson, S. Goedhart, et al., The MeerKAT Galactic Plane Survey (MeerGAL), http://star.herts.ac.uk/progs/surveys_mw_radio.html.
[185]  Y. Perrott, A. M. M. Scaife, D. A. Green, et al., “AMI Galactic Plane Survey at 16 GHz: I. Observing, mapping and source extraction,” Monthly Notices of the Royal Astronomical Society, 2013.
[186]  I. Bains, M. Cohen, J. M. Chapman, R. M. Deacon, and M. P. Redman, “Revealing the transition from post-AGB stars to planetary nebulae: non-thermal and thermal radio continuum observations,” Monthly Notices of the Royal Astronomical Society, vol. 397, no. 3, pp. 1386–1401, 2009.
[187]  E. M. Waldram, G. G. Pooley, K. J. B. Grainge et al., “9C: a survey of radio sources at 15 GHz with the Ryle Telescope,” Monthly Notices of the Royal Astronomical Society, vol. 342, no. 3, pp. 915–925, 2003.
[188]  R. S. Furuya, Y. Kitamura, A. Wootten, M. J. Claussen, and R. Kawabe, “Water maser survey toward low-mass young stellar objects in the northern sky with the Nobeyama 45 meter telescope and the very large array,” The Astrophysical Journal Supplement Series, vol. 144, no. 1, pp. 71–134, 2003.
[189]  C. T. Tibbs, A. M. M. Scaife, C. Dickinson et al., “AMI observations of the anomalous microwave emission in the perseus molecular cloud,” http://arxiv.org/abs/1303.5501.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413