全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Onset Time of Several SPE/GLE Events: Indications from High-Energy Gamma-Ray and Neutron Measurements by CORONAS-F

DOI: 10.1155/2013/690921

Full-Text   Cite this paper   Add to My Lib

Abstract:

We analyzed the high-energy gamma and neutron emissions observed by the SONG instrument onboard the CORONAS-F satellite during August 25, 2001, October 28, 2003, November 4, 2003, and January 20, 2005 solar flares. These flares produced neutrons and/or protons recorded near Earth. The SONG response was consistent with detection of the pion-decay gamma emission and neutrons in these events. We supposed that a time profile of the soft X-ray derivative was a good proxy of time behavior of the flare energy release. Then we showed that time intervals of the maximum both of energy release and pion-decay-emission coincided well. We determined the onset time of GLEs 65, 69 on the basis of neutron monitor data using the superposed epoch method. The time of high-energy proton onset on November 4, 2003 was found from the GOES data. The time delay between the high-energy gamma ray observation and the high-energy protons onset time was <5 minutes. This time lag corresponds to the least possible proton propagation time. So, we conclude that in these events both protons interacted in the solar atmosphere and the first protons which arrived to Earth, belonged to one and the same population of the accelerated particles. 1. Introduction Solar energetic protons, as Solar Proton Events (SPE) or Ground Level Enhancement (GLE), are observed directly over long time, most probably since the events on February 28 and March 7 in 1942 were identified by Forbush [1] and named later as GLE 1 and 2, respectively. Altogether during the systematic investigation of the GLEs 71 events were recorded. Lower energy of particles, detected by high-latitude neutrons monitors (NM), is ~450?MeV (this threshold is determined by atmospheric absorption), but the effective energy exceeds 1?GeV. The minimum energy for medium and low-latitude NM is even higher; it is determined by the geomagnetic cutoff. Satellite measurements allowed us to study accelerated particles below the atmospheric threshold (~400?MeV). A list of SPE events (N(>10?MeV) > 10?protons?cm?2?s?1?sr?1) beginning from 1976 can be found, for example, at [2], http://umbra.nascom.nasa.gov/SEP/, and of GLE events at http://neutronm.bartol.udel.edu/~pyle/GLE_List.txt. GLE connection with solar flares is not in doubt, but still debated question is whether the protons are accelerated up to subrelativistic energies directly during flare energy release or acceleration occurs later when the shock waves propagate in the upper corona. Direct study of the GLE dynamics does not answer this question, because particles’ propagation in the

References

[1]  S. E. Forbush, “Three unusual cosmic-ray increases possibly due to charged particles from the sun,” Physical Review, vol. 70, no. 9-10, pp. 771–772, 1946.
[2]  A. V. Belov, E. A. Eroshenko, O. N. Kryakunova, V. G. Kurt, and V. G. Yanke, “Ground level enhancements of solar cosmic rays during the last three solar cycles,” Geomagnetism and Aeronomy, vol. 50, no. 1, pp. 21–33, 2010.
[3]  M. B. Kallenrode and G. Wibberenz, “Influence of interplanetary propagation on particle onsets,” in Proceedings of the 21st International Cosmic Ray Conference, vol. 5, pp. 229–232, Adelaide, Australia, 1990.
[4]  R. Ramaty and R. J. Murphy, “Nuclear processes and accelerated particles in solar flares,” Space Science Reviews, vol. 45, no. 3-4, pp. 213–268, 1987.
[5]  R. J. Murphy, C. D. Dermer, and R. Ramaty, “High-energy processes in solar flares,” Astrophysical Journal Supplement Series, vol. 63, pp. 721–748, 1987.
[6]  E. L. Chupp, D. J. Forrest, J. M. Ryan, et al., “A direct observation of solar neutrons following the 01:18 UT flare on 1980 June 21,” Astrophysical Journal Letters, vol. 263, pp. L95–L99, 1982.
[7]  H. Debrunner, E. O. Flückiger, E. L. Chupp, and D. J. Forrest, “The solar cosmic ray neutron event on June 3, 1982,” in Proceedings of the 18th International Cosmic Ray Conference, vol. 4, pp. 75–78, Bangalore, India, 1983.
[8]  E. L. Chupp, H. Debrunner, E. O. Flückiger, et al., “Solar neutron emissivity during the large flare on 1982 June 3,” Astrophysical Journal, vol. 318, pp. 913–925, 1987.
[9]  Y. E. Efimov, G. E. Kocharov, and K. Kudela, “On the solar neutrons observation on high mountain neutron monitor,” in Proceedings of the 18th International Cosmic Ray Conference, vol. 10, pp. 276–278, Bangalore, India, 1983.
[10]  P. Evenson, P. Meyer, and K. R. Pyle, “Protons from decay of solar flare neutrons,” Astrophysical Journal, vol. 274, pp. 875–882, 1983.
[11]  P. Evenson, R. Kroeger, P. Meyer, and D. Muller, “Solar flare neutron fluxes derived from interplanetary charged particle measurements,” in Proceedings of the 18th International Cosmic Ray Conference, vol. 4, pp. 97–100, Bangalore, India, 1983.
[12]  Y. Muraki, “Solar neutrons and particle acceleration at the sun: what we learnt from solar neutron telescope,” in Proceedings of the 30th International Cosmic Ray Conference, vol. 6, pp. 181–194, Merida, Mexico, 2009.
[13]  R. J. Murphy, B. Kozlovsky, G. H. Share, X. M. Hua, and R. E. Lingenfelter, “Using gamma-ray and neutron emission to determine solar flare accelerated particle spectra and composition and the conditions within the flare magnetic loop,” Astrophysical Journal Supplement Series, vol. 168, no. 1, pp. 167–194, 2007.
[14]  Y. Hirasima, K. Okudaira, and T. Yamagami, “Solar gamma ray burst observed on 27 Sept. 1968,” in Proceedings of the 11 International Cosmic Ray Conference, vol. 2, pp. 683–686, Budapest, Hungary, 1970.
[15]  E. L. Chupp, D. J. Forrest, P. R. Higbie, A. N. Suri, C. Tsai, and P. P. Dunphy, “Solar gamma ray lines observed during the solar activity of August 2 to August 11, 1972,” Nature, vol. 241, no. 5388, pp. 333–335, 1973.
[16]  D. J. Forrest, W. T. Vestrand, E. L. Chupp, et al., “Neutral pion production in solar flares,” in Proceedings of the 19th International Cosmic Ray Conference, vol. 4, pp. 146–149, 1985.
[17]  D. J. Forrest, W. T. Vestrand, E. L. Chupp, E. Rieger, J. Cooper, and G. H. Share, “Very energetic gamma-rays from the 3 June 1982 solar flare,” Advances in Space Research, vol. 6, no. 6, pp. 115–118, 1986.
[18]  P. P. Dunphy, E. L. Chupp, and E. Rieger, “Analysis of SMM GRS high-energy (> 10 MeV) data from the solar flare of 1988 December 16,” in Proceedings of the 21st International Cosmic Ray Conference, vol. 5, pp. 75–78, Adelaide, Australia, 1990.
[19]  P. P. Dunphy and E. L. Chupp, “High-energy gamma-rays and neutrons from the solar flare of 1989 March 6,” in Proceedings of the 22nd International Cosmic Ray Conference, vol. 3, pp. 65–68, Dublin, Ireland, 1991.
[20]  O. V. Terekhov, R. A. Sunyaev, A. Y. Tkachenko et al., “Deuterium synthesis during the solar flare of March 22, 1991 (Granat data),” Astronomy Letters, vol. 22, no. 2, pp. 143–147, 1996.
[21]  H. Debrunner, J. A. Lockwood, C. Barat et al., “Energetic neutrons, protons, and gamma rays during the 1990 May 24 solar cosmic-ray event,” Astrophysical Journal, vol. 479, pp. 997–1011, 1997.
[22]  N. Vilmer, A. L. MacKinnon, G. Trottet, and C. Barat, “High energy particles accelerated during the large solar flare of 1990 May 24: X/γ-ray observations,” Astronomy and Astrophysics, vol. 412, pp. 865–874, 2003.
[23]  E. J. Schneid, D. L. Bertsch, B. L. Dingus, et al., “EGRET observations of X-class solar flares,” Astronomy and Astrophysics Supplement Series, vol. 120, pp. 299–302, 1996.
[24]  P. P. Dunphy, E. L. Chupp, D. L. Bertsch, E. J. Schneid, S. R. Gottesman, and G. Kanbach, “Gamma-rays and neutrons as a probe of flare proton spectra: the solar flare of 11 June 1991,” Solar Physics, vol. 187, no. 1, pp. 45–57, 1999.
[25]  V. V. Akimov, V. G. Afanassyev, A. S. Belousov, et al., “Observation of high energy gamma-rays with the GAMMA-1 telescope (E>30 MeV),” in Proceedings of the 22nd International Cosmic Ray Conference, vol. 3, pp. 73–76, Dublin, Ireland, 1991.
[26]  V. V. Akimov, P. Ambro?, A. V. Belov et al., “Evidence for prolonged acceleration based on a detailed analysis of the long-duration solar gamma-ray flare of June 15, 1991,” Solar Physics, vol. 166, no. 1, pp. 107–134, 1996.
[27]  S. N. Kuznetsov, K. Kudela, I. N. Myagkova, A. N. Podorolsky, S. P. Ryumin, and B. Y. Yushkov, “First experience with SONG-M measurements on board CORONAS-F satellite,” Indian Journal of Radio and Space Physics, vol. 33, no. 6, pp. 353–357, 2004.
[28]  S. N. Kuznetsov, V. G. Kurt, I. N. Myagkova, B. Y. Yushkov, and K. Kudela, “Gamma-ray emission and neutrons from solar flares recorded by the SONG instrument in 2001–2004,” Solar System Research, vol. 40, no. 2, pp. 104–110, 2006.
[29]  V. G. Kurt, B. Y. Yushkov, K. Kudela, and V. I. Galkin, “High-energy gamma radiation of solar flares as an indicator of acceleration of energetic protons,” Cosmic Research, vol. 48, no. 1, pp. 70–79, 2010.
[30]  E. L. Chupp, G. Trottet, P. P. Dunphy, and E. Rieger, “What we know and what we do not know about high energy neutral emissions from solar flares (a challenge for future missions),” in Proceedings of the 28th International Cosmic Ray Conference, pp. 3171–3174, Tsukuba, Japan, 2003.
[31]  E. L. Chupp and J. M. Ryan, “High energy neutron and pion-decay gamma-ray emissions from solar flares,” Research in Astronomy and Astrophysics, vol. 9, no. 1, pp. 11–40, 2009.
[32]  M. Ackermann, M. Ajello, A. Allafort, et al., “FERMI detection of γ-ray emission from the M2 soft X-ray flare on 2010 June 12,” Astrophysical Journal, vol. 745, pp. 144–154, 2012.
[33]  N. Vilmer, A. L. MacKinnon, and G. J. Hurford, “Properties of energetic ions in the solar atmosphere from gamma-ray and neutron observations,” Space Science Review, vol. 159, pp. 167–224, 2011.
[34]  L. I. Miroshnichenko and W. Q. Gan, “Particle acceleration and gamma rays in solar flares: recent observations and new modeling,” Advances in Space Research, vol. 50, pp. 736–756, 2012.
[35]  S. N. Kuznetsov, V. G. Kurt, B. Y. Yushkov, K. Kudela, and V. I. Galkin, “Gamma-ray and high-energy-neutron measurements on CORONAS-F during the solar flare of 28 October 2003,” Solar Physics, vol. 268, no. 1, pp. 175–193, 2011.
[36]  S. Masson, K. L. Klein, R. Bütikofer et al., “Acceleration of relativistic protons during the 20 January 2005 flare and CME,” Solar Physics, vol. 257, pp. 305–322, 2009.
[37]  I. A. Zhitnik, Y. I. Logachev, A. V. Bogomolov et al., “Polarization, temporal, and spectral parameters of solar flare hard X-rays as measured by the SPR-N instrument onboard the CORONAS-F satellite,” Solar System Research, vol. 40, no. 2, pp. 93–103, 2006.
[38]  T. R. Metcalf, D. Alexander, H. S. Hudson, and D. W. Longcope, “Trace and Yohkoh observations of a white-light flare,” Astrophysical Journal, vol. 595, pp. 483–492, 2003.
[39]  M. Siarkowski and R. Falewicz, “Variations of the hard X-ray footpoint asymmetry in a solar flare,” Astronomy and Astrophysics, vol. 428, no. 1, pp. 219–226, 2004.
[40]  J. P. Raulin, V. S. Makhmutov, P. Kaufmann et al., “Analysis of the impulsive phase of a solar flare at submillimeter wavelengths,” Solar Physics, vol. 223, no. 1-2, pp. 181–199, 2004.
[41]  V. S. Makhmutov, V. G. Kurt, B. Yu. Yushkov, et al., “Spectral peculiarities of high energy X-ray radiation, gamma radiation, and submillimeter radio emission in the impulsive phase of a solar flare,” Bulletin of the Russian Academy of Sciences, Physics, vol. 75, pp. 747–750, 2011.
[42]  J. Sato, Y. Matsumoto, K. Yoshimura et al., “Yohkoh/WBS recalibration and a comprehensive catalogue of solar flares observed by Yohkoh SXT, HXT and WBS instruments,” Solar Physics, vol. 236, no. 2, pp. 351–368, 2006.
[43]  V. G. Kurt, S. I. Svertilov, B. Y. Yushkov et al., “Dynamics and energetics of the thermal and nonthermal components in the solar flare of January 20, 2005, based on data from hard electromagnetic radiation detectors onboard the CORONAS-F satellite,” Astronomy Letters, vol. 36, no. 4, pp. 280–291, 2010.
[44]  K. Watanabe, Y. Muraki, Y. Matsubara, et al., “Solar neutron event in association with a large solar flare on August 25, 2001,” in Proceedings of the 28th International Cosmic Ray Conference, pp. 3179–3182, Tsukuba, Japan, 2003.
[45]  S. N. Kuznetsov, V. G. Kurt, B. Y. Yushkov et al., “28 october 2003 flare: high-energy gamma emission, type II radio emission and solar particle observations,” International Journal of Modern Physics A, vol. 20, no. 29, pp. 6705–6707, 2005.
[46]  J. Kiener, M. Gros, V. Tatischeff, and G. Weidenspointner, “Properties of the energetic particle distributions during the October 28, 2003 solar flare from INTEGRAL/SPI observations,” Astronomy and Astrophysics, vol. 445, pp. 725–733, 2006.
[47]  G. Trottet, S. Krucker, T. Lüthi, and A. Magun, “Radio submillimeter and γ-ray observations of the 2003 October 28 solar flare,” Astrophysical Journal, vol. 678, pp. 509–514, 2008.
[48]  C. H. Miklenic, A. M. Veronig, and B. Vr?nak, “Temporal comparison of nonthermal flare emission and magnetic-flux change rates,” Astronomy and Astrophysics, vol. 499, pp. 893–904, 2009.
[49]  J. W. Bieber, J. Clem, P. Evenson, R. Pyle, D. Ruffolo, and A. Sáiz, “Relativistic solar neutrons and protons on 28 October 2003,” Geophysical Research Letters, vol. 32, no. 3, article L03S02, 5 pages, 2005.
[50]  P. Kaufmann, J. P. Raulin, C. G. Giménez de Castro, et al., “A new solar burst spectral component emitting only in the terahertz range,” Astrophysical Journal Letters, vol. 603, pp. L121–L124, 2004.
[51]  S. R. Kane, J. M. McTiernan, and K. Hurley, “Multispacecraft observations of the hard X-ray emission from the giant solar flare on 2003 November 4,” Astronomy and Astrophysics, vol. 433, no. 3, pp. 1133–1138, 2005.
[52]  P. Kaufmann, G. D. Holman, Y. Su, et al., “Unusual emissions at various energies prior to the impulsive phase of the large solar flare and coronal mass ejection of 4 November 2003,” Solar Physics, vol. 279, pp. 465–475, 2012.
[53]  K. Watanabe, M. Gros, P. H. Stoker et al., “Solar neutron events of 2003 October-november,” Astrophysical Journal, vol. 636, pp. 1135–1144, 2006.
[54]  V. V. Grechnev, V. G. Kurt, I. M. Chertok et al., “An extreme solar event of 20 January 2005: properties of the flare and the origin of energetic particles,” Solar Physics, vol. 252, no. 1, pp. 149–177, 2008.
[55]  C. Bouratzis, P. Preka-Papadema, A. Hillaris et al., “Radio observations of the 20 January 2005 X-class Flare,” Solar Physics, vol. 267, no. 2, pp. 343–359, 2010.
[56]  V. V. Zharkova, N. S. Meshalkina, L. K. Kashapova, A. T. Altyntsev, and A. A. Kuznetsov, “Effect of a self-induced electric field on the electron beam kinetics and resulting hard X-ray and microwave emissions in flares,” Geomagnetism and Aeronomy, vol. 51, pp. 1029–1040, 2011.
[57]  C. Pei, J. R. Jokipii, and J. Giacalone, “Effect of a random magnetic field on the onset times of solar particle events,” Astrophysical Journal, vol. 641, pp. 1222–1226, 2006.
[58]  K. L. Klein, S. Masson, R. Miteva, S. Samwel, O. Malandraki, and G. Trottet, “The Sun-Earth connection of energetic particles,” EAS Publications Series, vol. 55, pp. 321–326, 2012.
[59]  S. Masson, P. Démoulin, S. Dasso, and K. L. Klein, “The interplanetary magnetic structure that guides solar relativistic particles,” Astronomy and Astrophysics, vol. 538, article A32, 14 pages, 2012.
[60]  C. Plainaki, A. Belov, E. Eroshenko, H. Mavromichalaki, and V. Yanke, “Modeling ground level enhancements: event of 20 January 2005,” Journal of Geophysical Research A, vol. 112, no. 4, article A04102, 16 pages, 2007.
[61]  V. G. Kurt, B. Y. Yushkov, and A. V. Belov, “On the ground level enhancement beginning,” Astronomy Letters, vol. 36, no. 7, pp. 520–530, 2010.
[62]  V. V. Akimov, N. G. Leikov, V. G. Kurt, and I. M. Chertok, “The GAMMA-1 data on the March 26, 1991 solar flare,” in Proceedings of AIP Conference. High-energy solar phenomena—a new era of spacecraft, vol. 294, pp. 106–111, 1994.
[63]  A. V. Belov and M. A. Livshits, “Neutron burst on May 24, 1990,” Astronomy Letters, vol. 21, pp. 37–40, 1995.
[64]  V. Kurt, B. Yushkov, A. Belov, I. Chertok, and V. Grechnev, “Determination of acceleration time of protons responsible for the GLE onset,” Journal of Physics: Conference Series, http://conferenceseries.iop.org/content/home. In press.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413